首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of whole body sitting posture on cervico-thoracic posture, mechanical load and extensor muscle activity was examined in 23 asymptomatic adults. Cervical and upper thoracic extensor muscle activity measured in guided slouched and lumbo-pelvic neutral postures was normalised to that measured in a self-selected habitual posture. Head and neck posture and gravitational load moment measurements were obtained in each posture. Sagittal head translation, upper cervical extension and load moment were significantly greater in the slouched posture (p < 0.001). Contrasting patterns of cervical and thoracic extensor activity were observed in the slouched and neutral postures, with cervical extensor activity 40% higher in the slouched posture (p < 0.0001). Thoracic extensor activity was significantly higher in the lumbo-pelvic neutral posture than the habitual posture (p = 0.002). The significant changes in extensor muscle activity with postural modification appear to be induced by the associated change in mechanical load moment of the head. STATEMENT OF RELEVANCE: More neutral sitting postures reduce the demand on the cervical extensor muscles and modify the relative contribution of cervical and thoracic extensors to the control of head and neck posture. Postures that promote these patterns of muscular activity may reduce cervical spine loading and the development of posture-related neck pain.  相似文献   

2.
While using their smartphone, users tend to adopt awkward neck and shoulder postures for an extended duration. Such postures impose the risk of MSDs on those body parts. Numerous studies have been undertaken to examine neck posture; however, few studies have investigated shoulder postures. This study examined various shoulder postures during smartphone use and their effect on neck and shoulder kinematics, muscle loading, and neck/shoulder discomfort. Thirty-two asymptomatic young adult smartphone users randomly performed texting tasks for 3 min at four different shoulder flexion angles (15°, 30°, 45°, and 60°), while maintained a neck posture in the neutral position (0° neck flexion angle). Measures were taken of neck and shoulder muscle activity of the cervical erector spinae (CES), anterior deltoid (AD), upper trapezius (UT) and lower trapezius (LT), and kinematic data (angle, distance and gravitational moment). Results showed AD and LT muscle activity significantly increased when the shoulder flexion angle increased with an opposite effect on CES and UT. A recommended shoulder posture was identified as 30° flexion, as this yielded the best compromise between activation levels of the four muscles studied. This angle also induced the lowest neck/shoulder discomfort score. The findings suggest smartphone users hold their device at approximately 30° shoulder flexion angle with their neck in a neutral posture to reduce the risk of shoulder and neck musculoskeletal disorders when smartphone texting.Relevance to industrySmartphone use in the manufacturing and service industries is an integral part of work and useful means of communication tool. Awkward postures during extensive smartphone use impose an increased risk of both neck and shoulder musculoskeletal disorders. Shoulder flexion angles need consideration when making recommendations about safe work postures during smartphone use.  相似文献   

3.
《Ergonomics》2012,55(6):990-1004
Tablet computer use requires substantial head and neck flexion, which is a risk factor for neck pain. The goal of this study was to evaluate the biomechanics of the head–neck system during seated tablet computer use under a variety of conditions. A physiologically relevant variable, gravitational demand (the ratio of gravitational moment due to the weight of the head to maximal muscle moment capacity), was estimated using a musculoskeletal model incorporating subject-specific size and intervertebral postures from radiographs. Gravitational demand in postures adopted during tablet computer use was 3–5 times that of the neutral posture, with the lowest demand when the tablet was in a high propped position. Moreover, the estimated gravitational demand could be correlated to head and neck postural measures (0.48 < R 2 < 0.64, p < 0.001). These findings provide quantitative data about mechanical requirements on the neck musculature during tablet computer use and are important for developing ergonomics guidelines.

Practitioner Summary: Flexed head and neck postures occur during tablet computer use and are implicated in neck pain. The mechanical demand on the neck muscles was estimated to increase 3–5 times during seated tablet computer use versus seated neutral posture, with the lowest demand in a high propped tablet position but few differences in other conditions.  相似文献   

4.
Association between smartphone use and head-down tilt posture has not yet been quantitatively evaluated in natural settings. This study aimed to objectively assess the angle and duration of head-down tilt posture of smartphone users during a typical working day via naturalistic data collection. Thirty-one college students conducted their typical school activities while their head posture and smartphone-app usage records were collected simultaneously for 8?hours. Participants spent 125.9?minutes (median usage duration) on their smartphones with significantly larger head-down tilt (p?<?.05) than when they were not using the phone. Head tilt angle greater than 30° was found to be more common when using the phone, while head tilt less than 20° was more common when they were not using the phone. Study findings provide empirical evidence that supports an association between the duration of smartphone use and the intensity of head-down tilt posture.

Practitioner Summary: Head postures of young smartphone users were quantified for 8?hours continuously during a typical workday using a wearable sensor. Participants spent more time in larger head-down tilt postures (greater than 30°) when they were using their smartphones as compared to when they were not using them.  相似文献   


5.
Wong TF  Chow DH  Holmes AD  Cheung KM 《Ergonomics》2006,49(9):860-873
Poor posture has been suggested as one of the main factors contributing to the high prevalence of neck pain in video display unit (VDU) users, but no clear association between pain and any particular resting neck posture has been found. Postural awareness of the neck, as indicated by the repositioning accuracy, may therefore be an appropriate measure and potentially useful assessment tool. The objective of this study is to examine whether posture and fatigue affect the head repositioning ability in typical VDU usage. A group of 20 healthy participants reproduced a normal comfortable posture for forward, upright and backward chair back inclinations in random order both before and after fatigue of the upper trapezius muscles. Ten repetitions of the posture were recorded for 2 s each, and the angular and translational deviations from the original head position were measured with regard to the external environment (head in space repositioning) and with regard to the trunk (head on trunk repositioning). Analysis by repeated measures ANOVA showed significant effects and interactions of fatigue and chair back inclination on the repositioning errors in the sagittal plane, which typically showed systematic trends towards certain postures rather than random errors around a mean position. While further work is required to examine the ergonomic impact of impaired repositioning ability, head repositioning is sensitive to ergonomic factors such as seating configuration and fatigue, and may therefore be a useful tool for evaluation of static working postures.  相似文献   

6.
《Ergonomics》2012,55(9):860-873
Poor posture has been suggested as one of the main factors contributing to the high prevalence of neck pain in video display unit (VDU) users, but no clear association between pain and any particular resting neck posture has been found. Postural awareness of the neck, as indicated by the repositioning accuracy, may therefore be an appropriate measure and potentially useful assessment tool. The objective of this study is to examine whether posture and fatigue affect the head repositioning ability in typical VDU usage.

A group of 20 healthy participants reproduced a normal comfortable posture for forward, upright and backward chair back inclinations in random order both before and after fatigue of the upper trapezius muscles. Ten repetitions of the posture were recorded for 2 s each, and the angular and translational deviations from the original head position were measured with regard to the external environment (head in space repositioning) and with regard to the trunk (head on trunk repositioning). Analysis by repeated measures ANOVA showed significant effects and interactions of fatigue and chair back inclination on the repositioning errors in the sagittal plane, which typically showed systematic trends towards certain postures rather than random errors around a mean position.

While further work is required to examine the ergonomic impact of impaired repositioning ability, head repositioning is sensitive to ergonomic factors such as seating configuration and fatigue, and may therefore be a useful tool for evaluation of static working postures.  相似文献   

7.
This study presents a 3D virtual reality (VR) keyboard system with realistic haptic feedback. The system uses two five-fingered data gloves to track finger positions and postures, uses micro-speakers to create simulated vibrations, and uses a head-mounted display (HMD) for 3D display. When users press a virtual key in the VR environment, the system can provide realistic simulated key click haptic feedback to users. The results of this study show that the advantages of the haptic VR keyboard are that users can use it when wearing HMDs (users do not need to remove HMDs to use the VR keyboard), the haptic VR keyboard can pop-up display at any location in the VR environments (users do not need to go to a specific location to use an actual physical keyboard), and the haptic VR keyboard can be used to provide realistic key click haptic feedback (which other studies have shown enhances user performance). The results also show that the haptic VR keyboard system can be used to create complex vibrations that simulate measured vibrations from a real keyboard and enhance keyboard interaction in a fully immersive VR environment.  相似文献   

8.
Laptop computers may be used in a variety of postures not coupled to the office workstation. Using passive motion analysis, this study examined mean joint angles during a short typing/editing task in college students (n=20), in up to seven positions. Comfort was assessed after task execution through a body map. For three required postures, joint angles in a prone posture were different than those while seated at a couch with feet either on floor or on ottoman. Specifically, the prone posture was characterized by comparatively non-neutral shoulders, elbows and wrists, and pronounced neck extension. Significantly greater intensity and more regions of discomfort were marked for the prone posture than for the seated postures. It is recommended that the prone posture only be assumed briefly during laptop use. Exposure to laptops outside of the office setting should be assessed in future epidemiologic studies of musculoskeletal complaints and computer use.  相似文献   

9.
《Advanced Robotics》2013,27(10):1053-1073
In telexistence master–slave systems, it is important to transmit visual information from remote places to the operator. Conventional imaging devices in head-mounted displays (HMDs) can only express the three-axis rotation of the neck. However, humans can obtain broader visual fields and motion parallax information from the translational motion of their necks. We have proposed a system that can acquire natural and comfortable visual information, and can accurately track the head motion of a person. Our proposed device can express the head motion and the translation movements of the neck. We have developed a robot, called 'TORSO', and constructed a telexistence visual system with a display device, HMD. In this paper, by means of a broader field of view achieved by motion involving looking around, we demonstrate the advantage and novelty of our proposed system. In addition, we suggest the evolution of the TORSO–HMD system.  相似文献   

10.
《Ergonomics》2012,55(1):74-82
This study quantified postures of users working on a notebook computer situated in their lap and tested the effect of using a device designed to increase the height of the notebook when placed on the lap. A motion analysis system measured head, neck and upper extremity postures of 15 adults as they worked on a notebook computer placed on a desk (DESK), the lap (LAP) and a commercially available lapdesk (LAPDESK). Compared with the DESK, the LAP increased downwards head tilt 6° and wrist extension 8°. Shoulder flexion and ulnar deviation decreased 13° and 9°, respectively. Compared with the LAP, the LAPDESK decreased downwards head tilt 4°, neck flexion 2°, and wrist extension 9°. Users reported less discomfort and difficulty in the DESK configuration. Use of the lapdesk improved postures compared with the lap; however, all configurations resulted in high values of wrist extension, wrist deviation and downwards head tilt.

Statement of Relevance: This study quantifies postures of users working with a notebook computer in typical portable configurations. A better understanding of the postures assumed during notebook computer use can improve usage guidelines to reduce the risk of musculoskeletal injuries  相似文献   

11.
Poor neck and shoulder postures have been suggested to be a cause of neck and shoulder pain in computer workers. The present study aimed to evaluate and compare the head, neck and shoulder postures of office workers with and without symptoms in these regions, in their actual work environments. The two all female subject groups reported significantly different discomfort scores across five trials repeated in a single working day. The results of repeated video capture and two-dimensional motion analysis showed that there were trends for increased head tilt and neck flexion postures in the symptomatic subjects (n = 8), compared to the asymptomatic subjects (n = 8). Symptomatic subjects also tended to have more protracted acromions compared with asymptomatic subjects and showed greater movement excursions in the head segment and the acromion. All subjects demonstrated an approximately 10% increase in forward head posture from their relaxed sitting postures when working with the computer display, but there were no significant changes in posture as a result of time-at-work.  相似文献   

12.
Occupational postures are considered to be an important group of risk factors for musculoskeletal pain. However, the exposure-outcome association is not clear yet. Therefore, we aimed to determine the exposure-outcome association of working postures and musculoskeletal symptoms. Also, we aimed to establish exposure limits for working postures. In a prospective cohort study among 789 workers, intensity, frequency and duration of postures were assessed at baseline using observations. Musculoskeletal pain was assessed cross-sectionally and longitudinally and associations of postures and pain were addressed using logistic regression analyses. Cut-off points were estimated based on ROC-curve analyses. Associations were found for kneeling/crouching and low-back pain, neck flexion and rotation and neck pain, trunk flexion and low-back pain, and arm elevation and neck and shoulder pain. The results provide insight into exposure-outcome relations between working postures and musculoskeletal symptoms as well as evidence-based working posture exposure limits that can be used in future guidelines and risk assessment tools.

Practitioner Summary: Our study gives insight into exposure-outcome associations of working postures and musculoskeletal symptoms (kneeling/crouching and low-back pain, neck flexion/rotation and neck pain, trunk flexion and low-back pain, and arm elevation and neck and shoulder pain). Results furthermore deliver evidence-based postural exposure limits that can be used in guidelines and risk assessments.  相似文献   


13.
I Kant  J H Notermans  P J Borm 《Ergonomics》1990,33(2):209-220
The working postures of mechanics (n = 84) in 42 garages were observed using the Ovako Working posture Analysis System (OWAS). During observation, both working postures and work activities were recorded. A computer program was developed for the data analyses. Using this program it is possible to calculate the working posture load for each work activity and the contribution of a specific activity to the total working posture load. This is a substantial extension of the original OWAS method. Five out of 19 observed postures of the body members were classified as Action Category 2, which suggests they were slightly harmful to the musculoskeletal system and likely to cause discomfort. Of the so-called typical working postures, 31.9% was classified in Action Category 2, suggesting that during a substantial part of the working day typical working postures occur which are at least slightly harmful to the musculoskeletal system. Moreover, those work activities principally causing the workload to fall in OWAS' higher Action Categories were identified. For each of these three work activities an alternative work method was observed. The data show that in all three work activities the use of a vehicle lift reduces the number of poor working postures thereby reducing the load on the musculoskeletal system.  相似文献   

14.
This paper describes an investigation of the types of problems that may be experienced by Virtual Reality (VR) users. Initial concerns have been voiced about various issues concerning the design of VR equipment, particularly the physical ergonomics of head-mounted displays (HMDs) and hand-held input devices, and the problems associated with display resolution and lags. This study investigated a number of VR users' perceptions of the types of physical ergonomics issues that they were aware of when participating in a number of different virtual environments (VEs), using different VR systems. Several different methods were employed, including questionnaires, body mapping, user observation and interviews. Issues highlighted as either causing participants discomfort or interfering with their experience of the VE were: discomfort from static posture requirements, general discomfort from wearing the HMD, difficulty becoming accustomed to 3D hand held input devices, dissatisfaction with deficits in the visual display and fear of getting 'tangled' in connecting cables. The implications of these findings for developers, implementers and users of VR are discussed.  相似文献   

15.
Previous research has demonstrated a loss of helmet‐mounted display (HMD) legibility for users exposed to whole body vibration. A pair of human factors studies was conducted to evaluate the effect of whole body vibration on eye, head, and helmet movements for seated users of a HMD while conducting simple fixation and smooth pursuit tracking tasks. These experiments confirmed that vertical eye motion can be demonstrated, that is consistent with the human visual systems' response to the vestibular–ocular reflex (VOR). Helmet slippage was also shown to occur, which could exacerbate loss of display legibility. The largest amplitudes in eye movements were observed during exposure to sinusoidal vibration in the 4–6 Hz range, which is consistent with the frequencies that past research has associated with whole‐body resonance and the largest decrease in display legibility. Further, the measured eye movements appeared to be correlated with both the angular acceleration of the user's head and the angular slippage of the user's helmet. This research demonstrates that the loss of legibility while wearing HMDs likely results from a combination of VOR‐triggered eye movements and movement of the display. Future compensation algorithms should consider adjusting the display in response to both VOR‐triggered eye and HMD motion.  相似文献   

16.
This study evaluated the use of simple inclines as a portable peripheral for improving head and neck postures during notebook computer use on tables in portable environments such as hotel rooms, cafés, and airport lounges. A 3D motion analysis system measured head, neck and right upper extremity postures of 15 participants as they completed a 10 min computer task in six different configurations, all on a fixed height desk: no-incline, 12° incline, 25° incline, no-incline with external mouse, 25° incline with an external mouse, and a commercially available riser with external mouse and keyboard. After completion of the task, subjects rated the configuration for comfort and ease of use and indicated perceived discomfort in several body segments. Compared to the no-incline configuration, use of the 12° incline reduced forward head tilt and neck flexion while increasing wrist extension. The 25° incline further reduced head tilt and neck flexion while further increasing wrist extension. The 25° incline received the lowest comfort and ease of use ratings and the highest perceived discomfort score. For portable, temporary computing environments where internal input devices are used, users may find improved head and neck postures with acceptable wrist extension postures with the utilization of a 12° incline.  相似文献   

17.
Abstract— Binocular head‐mounted displays (HMDs) that could be used non‐immersively produced substantial interruption of the visual field. Monocular HMDs designed to be used non‐immersively created minimal interruption of the visual fields. The scotomata are small enough to allow the HMD to be worn in mobile situations, but inattention associated with use of the HMD may cause safety concerns for some mobile situations. A small opaque display can be positioned to provide a see‐through functionality.  相似文献   

18.
A primary cause of simulator sickness in head-mounted displays (HMDs) is conflict between the visual scene displayed to the user and the visual scene expected by the brain when the user’s head is in motion. It is useful to measure perceptual sensitivity to visual speed modulation in HMDs because conditions that minimize this sensitivity may prove less likely to elicit simulator sickness. In prior research, we measured sensitivity to visual gain modulation during slow, passive, full-body yaw rotations and observed that sensitivity was reduced when subjects fixated a head-fixed target compared with when they fixated a scene-fixed target. In the current study, we investigated whether this pattern of results persists when (1) movements are faster, active head turns, and (2) visual stimuli are presented on an HMD rather than on a monitor. Subjects wore an Oculus Rift CV1 HMD and viewed a 3D scene of white points on a black background. On each trial, subjects moved their head from a central position to face a 15° eccentric target. During the head movement they fixated a point that was either head-fixed or scene-fixed, depending on condition. They then reported if the visual scene motion was too fast or too slow. Visual speed on subsequent trials was modulated according to a staircase procedure to find the speed increment that was just noticeable. Sensitivity to speed modulation during active head movement was reduced during head-fixed fixation, similar to what we observed during passive whole-body rotation. We conclude that fixation of a head-fixed target is an effective way to reduce sensitivity to visual speed modulation in HMDs, and may also be an effective strategy to reduce susceptibility to simulator sickness.  相似文献   

19.
《Displays》2002,23(1-2):57-64
This chapter describes head mounted displays (HMDs) from the viewpoint of the human factors. Because it has two separate display systems, HMDs are especially effective in displaying stereoscopic images. To develop better stereoscopic three-dimensional display technologies, it is important to investigate visual functions such as accommodation and convergence. From the results of the experiments, it is now possible to establish the proper settings for HMD devices to reduce the visual load. An example of the industrial application of an HMD is illustrated.  相似文献   

20.
《Ergonomics》2012,55(12):2118-2136
This paper presents two posture risk quantification methods: first, an event-based method where the most common and the worst postures are estimated in a task; second, a time-based method where posture distributions are calculated from random samples of observed postures in the task. A ‘click-on-screen’ posture data entry method was developed for the time-based posture analysis method to make the observation process easier and to reduce possible posture categorization bias. Both methods were used to quantify various work posture parameters among a study cohort of 733 subjects from a prospective epidemiological study of upper extremity musculoskeletal disorders. Composite posture indices using a modified Rapid Upper Limb Assessment (RULA) method were also computed using data obtained by the two posture analysis methods. Results showed that both methods were able to distinguish jobs with large differences in certain posture measures. However, they did not produce the same results and could not be used interchangeably. Risk evaluation criteria should be developed, either for specific posture parameters or as a composite index, with a well-defined postural analysis method, so that users can follow exact procedures and obtain comparable results. The event-based method is easy to use and may suit practitioners better, while the time-based method adds more information to the measurement and may suit users who want more detailed information about posture exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号