首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
静电纺丝法制备PVA/TEOS复合纤维膜的研究   总被引:2,自引:0,他引:2  
张克宏  王鹏 《包装工程》2009,30(10):74-77,86
以聚乙烯醇(PVA)和正硅酸乙酯(TEOS)为原料,通过静电纺丝技术与溶胶-凝胶(Sol-Gel)方法,制备出不同反应时间的PVA/TEOS复合纤维膜。FT-IR和TEM观察表明,PVA纤维与TEOS溶胶之间形成了化学键结合,PVA复合纤维膜中的空隙被SiO2填充。XRD表明复合反应使PVA结晶能力明显降低。TG表明,复合膜具有良好的耐热性能,且随着复合时间的增加逐渐提高。力学性能测试表明,复合膜的拉伸强度在复合时间为7 h时达到最大值59.15 MPa。吸水和保水性能测试发现,随着复合时间的增加,复合膜的吸水性先增大后减小,而保水性越来越高。  相似文献   

2.
聚乙烯醇/纳米纤维素/聚乙烯醇的层层自组装及表征   总被引:1,自引:0,他引:1  
采用基于氢键驱动力的层层(LBL)自组装技术制备聚乙烯醇(PVA)/纳米纤维素(NCC)/聚乙烯醇复合膜。通过衰减全反射红外(ATR-IR)、扫描电子显微镜(SEM)和X射线衍射(XRD)分析,验证了该复合膜中NCC和PVA的单相分布情况,NCC晶格定向排列状态,以及NCC作为夹层的结构,并提出了机理假设论证了该结构复合膜的形成过程;通过拉伸强度、透光率和热稳定性测量,表明LBL自组装制备的PVA/NCC/PVA复合膜具有高的拉伸强度、高的透光率和较高的热稳定性,其中拉伸强度较PVA膜提高了46.1%,透光率提高了5.44%,热分解温度提高了13.2℃,表明该法制备的PVA/NCC/PVA复合膜是一种良好的功能性薄膜。  相似文献   

3.
用硅烷偶联剂γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH550)对纳米TiO2进行改性, 将不同比例的聚乙烯醇(17-88与17-99)相混合制成胶液, 再采用直接共混法制备了纳米TiO2/聚乙烯醇(PVA)复合材料, 并流延成膜。通过自制透水仪、 扫描电镜、 热失重分析、 拉伸强度、 耐水性能以及透明性对纳米TiO2/PVA复合膜进行表征, 探讨不同含量的PVA 17-88对复合膜的性能影响。结果表明, PVA 17-88的质量分数为30%, 纳米TiO2 /PVA膜厚度控制在25~30 μm, 透水量较大, 拉伸强度达到28.72 MPa, 耐水性能最佳。   相似文献   

4.
目的将聚乙烯醇(PVA)引入壳聚糖(CS)/有机累托石(OREC)复合体系制备插层效果、力学性能、抗紫外老化及阻隔性能良好的插层纳米复合膜。方法利用溶液流延法制备PVA-CS/OREC系列复合膜,以XRD及SEM研究复合膜的插层结构及OREC在基体中的分散性,研究复合膜的力学性能、抗紫外辐射性及水蒸气透过性。结果 OREC及PVA添加量较少时可与CS形成良好的插层结构。当OREC质量分数为2%,PVA质量分数为10%时的复合膜(标记为PVA10-CS/OREC2)插层结构最好,OREC在CS及PVA基体中分散性最好,与OREC质量分数为2%且不含PVA的复合膜(标记为CS/OREC2)相比,拉伸强度提高42.2%,断裂伸长率提高30%,水蒸气透过量降低10.2%,复合膜经紫外辐射后拉伸强度保持率、断裂伸长保持率仍达82.5%及68.2%。结论 PVA10-CS/OREC2膜可作为医用膜和药品、食品等的包装材料。  相似文献   

5.
为了揭示不同结构的无机盐对淀粉/聚乙烯醇(PVA)共混材料性能的影响规律,分别以Li Cl,Mg Cl2·6H2O,Al Cl3·6H2O,Mg(NO3)2·6H2O,Ca(NO3)2·4H2O和Al(NO3)3·9H2O为改性剂,采用流延法制备了不同无机盐改性的淀粉/PVA复合膜,研究了改性前后淀粉/PVA复合膜的结构与性能。研究结果表明,无机盐可与淀粉和PVA发生相互作用,所含金属离子的价态越高,相互作用越强。无机盐会降低淀粉/PVA的结晶度,其中氯化物对淀粉/PVA结晶结构的破坏作用强于硝酸盐。淀粉/PVA在加入无机盐后热稳定性降低,硝酸盐对淀粉/PVA热稳定性的影响较氯化物小。无机盐能改善淀粉/PVA的相容性,氯化物的作用效果比硝酸盐强;与Li Cl和Al Cl3·6H2O相比,Mg Cl2·6H2O对淀粉/PVA相容性的改善最明显。无机盐可使淀粉/PVA拉伸强度下降、断裂伸长率提高,表现出增塑作用。  相似文献   

6.
不同原料NCC对NCC/PVA复合膜性能的影响   总被引:1,自引:0,他引:1  
分别以微晶纤维素、脱脂棉和漂白芦苇浆为原料,硫酸水解法制备纳米纤维素(NCC),与聚乙烯醇(PVA)简单共混流延成膜法制备NCC/PVA复合膜.m(NCC)/m总为7%时制备NCC/PVA复合膜,红外光谱分析结果表明复合膜中PVA分子链和NCC分子链间存在能提高两者相容性的氢键缔合作用力;热重分析结果表明复合膜的热稳定性与NCC热稳定性基本一致.扫描电子显微镜分析结果表明m(NCC)/m总为0.5%时制备NCC/PVA复合膜的表面和断面较为规整.3种原料中漂白芦苇浆NCC长径比最高(约为25),且m(NCC)/m总为0.5%时制备NCC/PVA复合膜拉伸强度最大,较PVA膜拉伸强度提高40.8%.3种原料NCC分别制备的3种NCC/PVA复合膜断裂伸长率,均较PVA膜断裂伸长率降低.随着m(NCC)/m总的增加,NCC/PVA复合膜透光率较PVA膜透光率降低;3种原料中微晶纤维素NCC/PVA复合膜透光率较PVA膜透光率降低最小.  相似文献   

7.
PVA/LDH-aCNTs杂化薄膜的制备及其性能研究   总被引:1,自引:1,他引:0  
杨伟  刘跃军 《包装学报》2017,9(3):43-49
采用恒定p H共沉淀法合成了层状双羟基氢氧化物(LDHs)和酸化碳纳米管(aCNTs)杂化材料,并将其作为填料应用到聚乙烯醇(PVA)薄膜中制备了PVA杂化薄膜。采用X射线衍射仪、拉曼光谱仪、扫描电子显微镜等对合成的LDH-aCNTs杂化材料进行了表征,并对PVA杂化薄膜进行了微观结构和力学性能测试。力学性能测试结果表明:当LDH-aCNTs的添加质量分数为3%时,PVA杂化薄膜的拉伸强度达到最大值,相比于纯PVA,拉伸强度约提高了41%。LDHs的存在有效地改善了aCNTs和PVA之间的相容性,使得PVA/LDH-aCNTs杂化薄膜具有较优异的力学性能。吸水性能测试结果表明:相比于纯PVA(吸水率为649%),添加质量分数为5%的PVA/LDH-aCNTs杂化薄膜的吸水率约下降了58%。LDH-aCNTs杂化纳米粒子中的含氧官能团能与PVA链中的羟基形成氢键,使裸露的亲水基团减少,吸水率下降。PVA/LDH-aCNTs杂化薄膜的力学性能和耐水性能的提高,有望拓宽PVA基复合薄膜的应用范围。  相似文献   

8.
目的 为改善PBAT膜的阻隔性,通过以戊二酸为交联剂改性PVA制备涂膜液,利用涂布法制备了具有高阻隔性的PBAT/PVA复合薄膜。方法 采用红外光谱、差示扫描量热仪、接触角测试仪、水蒸气透过率测试仪等对改性PVA单膜、PBAT/PVA复合膜的结构和性能进行研究。结果 表明由于戊二酸与PVA之间有一定的酯化作用,消耗PVA中部分羟基,从而提高了PVA的耐水性。戊二酸改性提高了PVA膜的疏水性,其接触角从11.3°提高到60.6°。与PBAT纯膜相比,涂覆了戊二酸的PVA涂膜液改性3 h后复合膜水蒸气透过率由647.95 g/(m2·24 h)降低到132.07 g/(m2·24 h)、氧气透过量由17 730.3 cm3/(m2·d·MPa)降低到396.6 cm3/(m2·d·MPa),证明改性3 h的PVA涂膜液对增加PBAT阻隔性最有帮助。结论 利用涂布法制备的PBAT/PVA复合薄膜具有较高阻隔性,为PBAT的广泛应用打下了基础。  相似文献   

9.
目的制备一种二乙醇胺/聚乙烯醇(PVA)涂覆于低密度聚乙烯的选择性渗透膜,并对其性能进行研究。方法以硅藻土为添加剂、低密度聚乙烯(LDPE)为基膜,以二乙醇胺为胺基载体的复合聚乙烯醇为涂层,通过将涂膜液涂覆在低密度聚乙烯膜上制备新型选择性渗透膜,并研究二乙醇胺载体选择性渗透膜的气体选择性透过性能、二乙醇胺载体对渗透膜结构与性能的影响。结果试验制备的基于二乙醇胺/PVA的选择性渗透膜的CO_2和O_2的渗透系数比值最高可达5.13。结论所制备薄膜提高了CO_2气体渗透率,CO_2和O_2的气体选择性系数。随着二乙醇胺载体含量的增加,复合膜拉伸强度变化不显著,断裂伸长率随着胺基载体含量的增大略有上升。  相似文献   

10.
为了延长圣女果采摘后的保质期,以聚乙烯醇(PVA)为成膜基材,向其中添加具有抗氧化和阻隔紫外线能力的黄芩和大黄提取液,采用流延法制备了PVA复合薄膜,并对薄膜的力学性能、光学性能、阻湿性、DPPH自由基清除能力、阻隔紫外线能力等性能进行表征。综合分析,分别选取PVA薄膜、40%黄芩/PVA复合膜、20%大黄/PVA复合膜和20%黄芩/20%大黄/PVA复合膜4种薄膜对圣女果进行包装。从圣女果的感官评价、失重率、可溶性固形物含量、可滴定酸含量、维生素C含量等测试结果可知,与未包装的对照组相比,由PVA复合膜包覆的圣女果品质明显提升,其中20%黄芩/20%大黄/PVA复合膜保鲜效果最好。此研究不仅能扩展中草药的应用范围,而且为圣女果保鲜提供了更多途径和方法。  相似文献   

11.
以球形纳米纤维素晶体(NCC)作增强相、柠檬酸作交联剂对聚乙烯醇(PVA)进行改性,制备了PVA/NCC纳米复合薄膜和柠檬酸交联PVA/NCC纳米复合薄膜。通过热重分析、差热分析、吸水实验和拉伸实验考察了NCC的添加和柠檬酸的交联对薄膜热性能、耐水性和力学性能的影响。结果表明,与纯PVA薄膜相比,改性PVA薄膜的起始分解温度升高、熔融/结晶峰向高温方向移动、吸水率降低;只用NCC或柠檬酸对PVA改性时,所得PVA/NCC纳米复合薄膜、柠檬酸交联PVA薄膜的力学性能均对环境湿度敏感;同时用NCC(m(NCC)/m(PVA)=6/100)和柠檬酸(m(柠檬酸)/m(PVA)=3/100或m(柠檬酸)/m(PVA)=4.5/100)对PVA改性时,所得柠檬酸交联PVA/NCC纳米复合薄膜的力学性能不随环境湿度变化。  相似文献   

12.
采用流延法制备了载Ag改性桑枝韧皮纤维素/聚乙烯醇(Ag-T-CMC/PVA)复合膜,并利用XRD、SEM、DSC等分析测试方法研究了该复合膜的结构和性能。结果表明:随着Ag-T-CMC含量增加,Ag-T-CMC/PVA复合膜的力学性能、耐水性及抗菌性能均有提高。当Ag-T-CMC与PVA质量比为2%时,力学性能达到最佳,拉伸强度提高了3.4%。SEM分析表明:Ag-T-CMC均匀分散于Ag-T-CMC/PVA复合膜中,表现出良好的相容性;随着Ag-T-CMC含量的增加,断层逐渐变得光滑平面,在Ag-T-CMC与PVA质量比为2%时,断层最光滑。吸水性能测试表明:Ag-T-CMC能明显降低Ag-T-CMC/PVA复合膜的吸水性。抑菌性能测试表明:Ag-T-CMC/PVA复合膜对大肠杆菌和金黄色葡萄球菌有一定的抑菌效果,且随着Ag-T-CMC含量的增大,抑菌圈直径变大,抑菌效果增强。   相似文献   

13.
目的制备一种具有良好力学性能和抑菌性能的新型抗菌聚乙烯醇复合膜。方法通过酸水解微晶纤维素制备纳米纤维素,经高碘酸钠氧化获得醛基纳米纤维素,加入银氨溶液原位合成载银纳米纤维素(Ag-DCNC)。以聚乙烯醇(PVA)为成膜基底,加入Ag-DCNC共混流延制备载银纳米纤维素/聚乙烯醇复合膜。结果 Ag-DCNC体积分数为3%时,复合膜的拉伸强度比纯PVA膜提高了8.8%。Ag-DCNC体积分数为5%的复合膜对大肠杆菌和金黄色葡萄球菌均具有较好的抑菌效果。结论载银纳米纤维素/聚乙烯醇复合膜具有较好的力学强度,对2种细菌均有良好的杀菌效果。该材料不但具有良好的性能,而且合成工艺简单,可以作为一种很有前途的抑菌膜用于包装行业。  相似文献   

14.
为了克服脱氧剂小袋包装与食品混装带来的工艺不足和安全问题,采用水热法制备了纳米零价铁(nZVI),并将其与聚乙烯醇(PVA)进行溶液共混,制备了结构及阻氧性能更为优异的聚乙烯醇/纳米零价铁复合膜。利用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、热重分析(TG)、差示扫描量热法(DSC)等对膜的结构和性能进行表征。结果表明:复合膜中PVA和nZVI实现了良好复合;加入nZVI后,复合膜的玻璃化温度(Tg)升高、热稳定性降低;随着nZVI含量的增加,复合膜的力学性能先增强后减弱,在nZVI质量分数为2%时,复合膜的抗拉强度和断后伸长率达到最大;复合膜的氧气透过系数随着nZVI含量的增加呈现先减小后增大的趋势,在nVZI质量分数为3%时,复合膜的氧气透过系数最小。在复合膜中,nZVI和PVA的羟基之间能形成一种强的相互作用,改善了复合材料的结构和性能,但nZVI及其表面部分氧化的变价铁催化加速了PVA的热降解。  相似文献   

15.
聚乙烯醇/二氧化硅共混膜的制备及耐温、耐溶剂性能研究   总被引:11,自引:0,他引:11  
以聚乙烯醇(PVA)和正硅酸乙酯(TEOS)为原料,通过溶胶-凝胶(Sol-Gel)方法,制备出不同二氧化硅含量的聚乙烯醇/二氧化硅(PVA/SiO2)共混均质膜。通过热重分析(TGA)、示差扫描量热法(DSC)和动态力学分析(DMA)研究了共混膜的热性能。结果表明,与PVA膜相比,PVA/SiO2共混膜具有更高的热稳定性,随SiO2含量的增大,共混膜的分解温度升高,玻璃化温度也略有提高。以水为溶剂,测定了共混膜的耐溶剂性能。与PVA膜相比,PVA/SiO2共混膜的耐溶剂性能有显著的提高。  相似文献   

16.
水/乙醇溶液在聚乙烯醇聚电解质膜中的吸附特性   总被引:3,自引:0,他引:3  
将季胺阳离子化聚乙烯醇膜材料和磷酸酯化阴离子聚乙烯醇膜材料按不同摩尔比共混制备了一系列膜,用等温吸附的方法测定了不同浓度的乙烯/水溶液在各种膜中的吸附量及吸附选择性,结果表明,与聚乙烯醇膜相比,水/乙醇在各种聚电解质膜中的吸附量均有不同程度的提高,当两种膜材料以接近1:1的比例共混时,各种浓度的乙醇/水溶液在该膜中的吸附量为最大,水/乙醇的吸附选择性也最大。  相似文献   

17.
Layered zinc hydroxide salts (zinc LHS) were intercalated with anionic orange azo dyes, namely methyl orange (MO) and orange II (OII), and co-intercalated with hydrated chloride anions. After characterization by X-ray diffraction (XRD), thermal analysis (TGA/DTA), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), the materials were used as fillers for poly(vinyl alcohol) (PVA). Colorful transparent films were obtained by wet casting, revealing good dispersion of the material into the polymer. In the case of zinc LHS/OII, PVA was intercalated between the zinc LHS layers. Evaluation of the mechanical properties of the PVA composite films revealed that the layered colorful materials were able to increase the mechanical properties of the PVA films only when the films were stored under lower relative humidity. As expected, films with higher water content displayed reduced tensile strength and modulus because of the plasticizing effect of water. As for the films stored at 43% relative humidity, more pronounced improvement of modulus was observed for 1 and 4% zinc LHS/OII, and enhanced tensile strength was achieved for 0.5 and 1% zinc LHS/OII. This effect can be attributed to better dispersion of the layered filler and its better adhesion to the PVA matrix.  相似文献   

18.
采用不同配比的再生丝素蛋白肽(SFP)与聚乙烯醇(PVA)水溶液共混的方法制备了再生丝素蛋白肽/聚乙烯醇(SFP/PVA)膜材料,对SFP/PVA膜材料进行了红外表征。通过电子拉力试验机进行了不同配比SFP/PVA膜材料的力学性能试验,结果显示配比为30/70的膜最大承受力为10.57N,拉伸强度为35.2MPa,力学性能最佳。膜材料降解性实验在人工体液中进行,结果显示其降解从SFP开始,随后与SFP结合部分的PVA在接触到水介质后逐步溶失。MTT法对HepG2细胞的促生长试验结果表明,各配比SFP/PVA膜材料均具有良好的促HepG2细胞快速黏附和生长性。综合各性能指标,配比为30/70的SFP/PVA膜具有作为组织工程支架载体的应用前景。  相似文献   

19.
为获得改性淀粉/聚乙烯醇(PVA)共混材料的结构与性能特征,以氯化镁/甘油为复配改性剂,采用溶液成膜方法制备了羧甲基淀粉(CMS)/PVA,研究了CMS/PVA复合膜的红外吸收特性、结晶性能、微观形貌、热性能、力学性能及生物降解性。研究结果表明,氯化镁和甘油可与CMS/PVA产生电子相互作用和氢键作用,阻碍CMS/PVA分子链的规整排列,提高羧甲基淀粉与PVA的相容性,降低CMS/PVA的结晶度和热稳定性。氯化镁/甘油复配改性剂对CMS/PVA的力学性能影响显著,可使CMS/PVA断裂伸长率和拉伸强度提高。氯化镁/甘油可促进CMS/PVA的降解,增加氯化镁/甘油复配改性剂中氯化镁的含量可提高复合膜的降解率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号