首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
This paper presents the results of an experimental study of various geotextiles used to filter clayey sludge. The use of geotextiles to filter clayey sludge or suspensions of fine particles in water is more complex than that for filtering suspensions of granular soils. In practice, such applications generally use flocculants to postpone the formation of a low-permeability filter cake. The objective of the present study, which does not use flocculants, is to determine how geotextile characteristics affect the capacity of the geotextile to filter clayey sludge. Three key questions are addressed: (1) What are the main differences between vertical and horizontal filtration? (2) How do geotextile characteristics (nature, opening size, permeability, etc.) affect its capacity to filter clayey sludge (3) How do clayey sludge characteristics (i.e., grain size distribution and concentration)? and the type of flow (i.e., constant head or constant flow) affect the filtering capacity of geotextiles? To evaluate the capacity of a geotextile to filter clayey sludge, we propose three relevant criteria and analyse two filtration phases induced by different cake-formation processes (controlled by the geotextile and controlled by the filter cake). To determine the main differences between vertical and horizontal filtration, the settling of fines in the testing device and its influence on the results are analysed and discussed. This study shows that, for the various clayey sludge tested, the geotextiles (needle-punched nonwoven and thermally bonded nonwoven) with the smallest opening sizes (O90?≤?60?μm) give the most promising results for filtering fines without the use of flocculants. Of these geotextiles, the thermally bonded nonwoven structure seems to offer the best filtration performance for the largest range of fines concentration in the sludge.  相似文献   

2.
Even after mechanical dewatering, activated sludge contains a large amount of water. Due to its composition and biological nature this material is usually highly compressible and known to be difficult to dewater. In the present work, two treatments (salt addition and pH modification) are proposed to highlight some aspects which could explain the poor dewaterability of activated sludge. Dewatering tests are carried out in a pressure-driven device in order to well examine both, filtration and compression stages. Physico-chemical parameters, such as surface charge, hydrophobicity, extracellular polymeric substances (EPS) content and filtrate turbidity are measured on the tested sludge, for a better analysis of dewatering results.The dewatering ability of the sludge is widely linked to the cohesion of the flocculated matrix and the presence of fine particles. Both treatments alter the flocculated matrix and release fine particles. The release of fine particles tends to clog both, the filter cake and the filter medium. Consequently, the filtration rate decreases due to higher resistances to the flow. On another hand, the polymeric matrix breakdown enables to release some water trapped within the floc to the bulk liquid phase and thus facilitates its removal, which tends to decrease the moisture content of the filter-cake. It also impacts the compression dewatering step. The more destroyed structures lead to less elastic cakes and thus a slower primary consolidation stage. At the opposite, the mobility of the broken aggregates within the filter-cake does not seem to be improved by size reduction (the kinetics of the secondary consolidation stage are not significantly modified).  相似文献   

3.
The goal of this study was to determine the effect of a long sludge retention time on the biodegradation of the endogenous residue in membrane digestion units receiving a daily feed of sludge and operated under either aerobic or intermittently aerated (22 h off-2 h on) conditions. The mixed liquor for these experiments was generated in a 10.4 day sludge retention time membrane bioreactor fed with a synthetic and completely biodegradable influent with acetate as the sole carbon source. It had uniform characteristics and consisted of only two components, heterotrophic biomass XH and endogenous residue XE. Membrane digestion unit experiments were conducted for 80 days without any sludge wastage except for some sampling. The dynamic behaviour of generation and consumption of filtered organic digestion products was characterized in the membrane digestion unit systems using three pore filter sizes. Results from this investigation indicated that the colloidal matter with size between 0.04 μm and 0.45 μm was shown to contain a recalcitrant fraction possibly composed of polysaccharides bound to proteins which accumulated in the membrane digestion unit under both conditions. Modelling the membrane digestion unit results by considering a first-order decay of the endogenous residue allowed to determine values of the endogenous residue decay rate of 0.0065 and 0.0072 d−1 under fully aerobic and intermittently aerated conditions, respectively. The effect of temperature on the endogenous decay rate was assessed for the intermittently aerated conditions in batch tests using thickened sludge from tests gave an endogenous decay rate constant of 0.0075 d−1 at 20 °C and an Arrhenius temperature correction factor of 1.033.  相似文献   

4.
The filtration properties of aerobic stabilized primary and mixed primary-chemical (alum) sludges have been studied in terms of capillary suction time (CST), specific resistance to filtration and coefficient of compressibility. The sludges were taken from “continuous” flow laboratory aerobic digesters, with detention times ranging from 5 to 35 days held at 7, 12, 18 and 25°C.Specific resistance to filtration and capillary suction time for both primary and mixed primary-chemical sludge generally improved with increasing detention times in the digester, except for the sludges stabilized at 7°C which remained almost unchanged. Mixed primary-chemical sludge showed better filtration properties than primary sludge alone. A fairly good correlation was found between specific resistance to filtration and CST divided by percentage of suspended solids in the sludge sample. The sludge compressibility increased with increasing detention time in the digester for both types of sludges investigated. Anoxic storage of aerobically stabilized sludges caused an increase in specific resistance to filtration.  相似文献   

5.
Colloid straining within saturated heterogeneous porous media   总被引:3,自引:0,他引:3  
Porubcan AA  Xu S 《Water research》2011,45(4):1796-1806
The transport of 0.46 μm, 2.94 μm, 5.1 μm and 6.06 μm latex particles in heterogeneous porous media prepared from the mixing of 0.78 mm, 0.46 mm and 0.23 mm quartz sands was investigated through column transport experiments. It was observed that the 0.46 μm particles traveled conservatively within the heterogeneous porous media, suggesting that under the experimental conditions employed in this research the strong repulsive interactions between the negatively charged latex particles and the clean quartz sands led to minimal colloid immobilization due to physicochemical filtration. The immobilization of the 2.94 μm, 5.1 μm and 6.06 μm latex particles was thus attributed to colloid straining. Experimental results showed that the straining of colloidal particles within heterogeneous sand mixtures increased when the fraction of finer sands increased. The mathematical model that was developed and tested based on results obtained using uniform sands (Xu et al., 2006) was found to be able to describe colloid straining within heterogeneous porous media. Examination of the relationship between the best-fit values of the clean-bed straining rate coefficients (k0) and the ratio of colloid diameter (dp) and sand grain size (dg) indicated that when number-average sizes were used to represent the size of the heterogeneous porous media, there existed a consistent relationship for both uniform sands and heterogeneous sand mixtures. Similarly, the use of the number-averaged sizes for the heterogeneous porous media produced a uniform relationship between the colloid straining capacity term (λ) and the ratio of dp/dg for all the sand treatments.  相似文献   

6.
The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 μm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 μm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 μm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 μm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 μm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 μm were detected in filtered water.  相似文献   

7.
The performance of a conventional biofilter (BF) and a vermifilter containing the earthworm, Eisenia foetida, (VF) for the treatment of domestic wastewater sludge were compared with the earthworm-microorganism interaction mechanisms involved in sludge stabilization. The results revealed that the presence of earthworms in the VF led to significant stabilization of the sludge by enhancing the reduction in volatile suspended solids (VSS) by 25.1%. Digestion by earthworms and the earthworm-microorganism interactions were responsible for 54% and 46% of this increase, respectively. Specifically, earthworms in the VF were capable of transforming insoluble organic materials to a soluble form and then selectively digesting the sludge particles of 10-200 μm to finer particles of 0-2 μm, which led to the further degradation of organic materials by the microorganisms in the reactor. Additionally, denaturing gradient gel electrophoresis (DGGE) profiles showed that there was an intensified bacterial diversity in the vermifilter due to the presence of earthworms, especially in response to the nutrients in their casts.  相似文献   

8.
A series of large scale direct shear experiments is used to investigate the effect of the geomembrane (GMB) surface roughness, geotextile (GTX) properties, and GTX ageing, on the GMB-GTX interface shear behaviour. Interfaces involving smooth, coextruded textured, and structured surface GMBs underlying four different nonwoven needle-punched staple fibres (GTXs) with mass per unit areas between 200 and 2400 g/m2, and a geocomposite drain (GCD) are examined at normal stresses between 250 and 1000 kPa. The results showed that the interlocking between the GMB and GTX increased with increasing the GMB asperity height and/or decreasing the mass per unit area of the GTX. For the interfaces that involved GTXs preaged prior to the shear box experiments for up to 2 years at 85 °C, it was found that the 2400 g/m2 heat bonded two-layered GTX exhibited internal shear failure at low shear displacements. However, all the highly aged single layered GTXs showed an increase in the peak interface friction angles with the increase in their ageing. For these single layered GTX, the results suggest that assessing the interface friction angles using unaged GTXs for the stability analysis is conservative as long as the GTX remains intact in the field.  相似文献   

9.
Conventional and modified membrane bioreactors (MBRs) are increasingly used in small-scale wastewater treatment. However, their widespread applications are hindered by their relatively high cost and operational complexity. In this study, we investigate a new concept of wastewater treatment using a nonwoven fabric filter bag (NFFB) as the membrane bioreactor. Activated sludge is charged in the nonwoven fabric filter bag and membrane filtration via the fabric is achieved under gravity flow without a suction pump. This study found that the biofilm layer formed inside the NFFB achieved 10 mg/L of suspended solids in the permeate within 20 min of initial operation. The dynamic biofilter layer showed good filterability and the specific membrane resistance consisted of 0.3-1.9 × 1012 m/kg. Due to the low F/M ratio (0.04-0.10 kg BOD5/m3/d) and the resultant low sludge yield, the reactor was operated without forming excess sludge. Although the reactor provided aerobic conditions, denitrification occurred in the biofilm layer to recover the alkalinity, thereby eliminating the need to supplement the alkalinity. This study indicates that the NFFB system provides a high potential of effective wastewater treatment with simple operation at reduced cost, and hence offer an attractive solution for widespread use in rural and sparsely populated areas.  相似文献   

10.
Hu K  Jiang JQ  Zhao QL  Lee DJ  Wang K  Qiu W 《Water research》2011,45(18):5969-5976
Freeze/thaw (F/T) treatment is an efficient pre-treatment process for biological sludges. When bulk sludge was frozen, tiny unfrozen regimes in the ice matrix were continuously dehydrated by surrounding ice fronts, termed as the “curing stage”. This work demonstrated that the F/T treatment could not only enhance sludge dewaterability, but also solubilize organic matters from sludge matrix. Most enhancement of sludge dewaterability was achieved during bulk freezing stage, with the waste activated sludge more readily dewatered than the mixed sludges after treatment. Conversely, the freezing stage released only limited quantities of organic matters to liquid. Conversely, the curing contributed mostly on chemical oxygen demand (COD) solubilization and NH3-N release. The crystallization of intra-aggregate moisture was claimed to damage cell membranes so to release intracellular substances to surroundings. The F/T treatment with sufficient curing is advised to effectively condition biological sludge as the feedstock of the following anaerobic digestion process.  相似文献   

11.
This paper presents the results of an extensive analytical investigation on the mechanisms involved in filtration of biological sludges by studying the changes in the “bound water” content of activated and mixed digested sludges when they were subjected to several physical, and chemical processes. A new method for determining bound water in sludges, based on differential thermal analysis (DTA), was developed which proved reliable and fast. Water in sludges exist in two states, as “free” or bulk water and as “bound” water which is held by the solid state either by sorption on specific sites, i.e. functional groups of the proteins and other macromolecules and/or restricted within pores and capillaries. Water binding by sludge displayed similar behaviour to the absorption of ions.All chemical coagulants (FeCl3, AlCl3, FeSO4) and cationic polyelectrolytes resulted in a reduction of the specific resistance and the bound water content of the sludge which was due to the replacement of water molecules by the adsorbed coagulant. Heat treatment of activated and digested sludge at 130°C resulted in a reduction of bound water by 30% whereas freezing and thawing reduced bound water by 70%.  相似文献   

12.
The Johannesburg City Council has operated biological and chemical nutrient removal wastewater treatment plants for the past 15–16 years. With the advent of more sophisticated sludge handling techniques, problems have been experienced with the recycle of phosphorus-rich sludge processing liquors to the liquid phase. These problems are expected to increase in the future. This paper describes laboratory and pilot scale experiments to determine viable methods for phosphorus removal from sludge liquors and ways of obviating phosphorus release from phosphorus-rich activated sludges. The design of new full-scale plants being constructed to pretreat phosphorus-rich sludges prior to dewatering are also discussed. The paper also describes innovative process layouts for sludge treatment keeping in mind various options for final sludge disposal. Emphasis is placed on the pre-aeration and phosphate precipitation from anaerobically digested and raw primary sludges and techniques for the thickening and dewatering of primary and waste activated sludges to minimize phosphate release into the liquors so produced. The technique of sludge thickening on linear screens is described and the coupling of linear screens to belt presses to complete the dewatering operation.  相似文献   

13.
In view of the merits of bioleaching and surfactant for sludge treatment, the possibility of surfactant with bioleaching pretreatment applied to improve sludge dewaterability was investigated in this work. The results showed that cetyl trimethyl ammonium chloride (CTAC) with bioleaching pretreatment was highly efficient in dewatering sludge. The optimal CTAC dosage and bioleaching pH for this combination were 120 mg/g (dry solids) and 3.55, respectively, under which the water content of filtrated cake was 68.94% and the specific resistance to filtration was 0.12 × 1013 m/kg with a reduction of 94.92%. Although CTAC and bioleaching both had positive effects on sludge dewatering, their combination was more efficient. The significant enhancement of sludge dewaterability was mainly contributed from the breakage and charge neutralization of sludge flocs, and the release of extracellular polymeric substances (EPS). In addition, the positive correlation between supernatant EPS concentration and sludge dewaterability was observed under experimental conditions.  相似文献   

14.
M Imbierowicz  A Chacuk 《Water research》2012,46(17):5747-5755
Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%.It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of ‘solid’ TOC attained 50% just after 15 min of the process.In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO2). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system.  相似文献   

15.
Pressurised electro-osmotic dewatering (PEOD) of two sewage sludges (activated and anaerobically digested) was studied under constant electric current (C.C.) and constant voltage (C.V.) with a laboratory chamber simulating closely an industrial filter. The influence of sludge characteristics, process parameters, and electrode/filter cloth position was investigated. The next parameters were tested: 40 and 80 A/m2, 20, 30, and 50 V—for digested sludge dewatering; and 20, 40 and 80 A/m2, 20, 30, and 50 V—for activated sludge dewatering. Effects of filter cloth electric resistance and initial cake thickness were also investigated.The application of PEOD provides a gain of 12 points of dry solids content for the digested sludge (47.0% w/w) and for the activated sludge (31.7% w/w). In PEOD processed at C.C. or at C.V., the dewatering flow rate was similar for the same electric field intensity. In C.C. mode, both the electric resistance of cake and voltage increase, causing a temperature rise by ohmic effect. In C.V. mode, a current intensity peak was observed in the earlier dewatering period. Applying at first a constant current and later on a constant voltage, permitted to have better control of ohmic heating effect. The dewatering rate was not significantly affected by the presence of filter cloth on electrodes, but the use of a thin filter cloth reduced remarkably the energy consumption compared to a thicker one: 69% of reduction energy input at 45% w/w of dry solids content. The reduction of the initial cake thickness is advantageous to increase the final dry solids content.  相似文献   

16.
Yang SF  Lin CF  Lin AY  Hong PK 《Water research》2011,45(11):3389-3397
This study investigated the adsorption, desorption, and biodegradation characteristics of sulfonamide antibiotics in the presence of activated sludge with and without being subjected to NaN3 biocide. Batch experiments were conducted and the relative contributions of adsorption and biodegradation to the observed removal of sulfonamide antibiotics were determined. Three sulfonamide antibiotics including sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), which had been detected in the influent and the activated sludge of wastewater treatment plants (WWTP) in Taiwan, were selected for this study. Experimental results showed that the antibiotic compounds were removed via sorption and biodegradation by the activated sludge, though biodegradation was inhibited in the first 12 h possibly due to competitive inhibition of xenobiotic oxidation by readily biodegradable substances. The affinity of sulfonamides to sterilized sludge was in the order of SDM > SMM > SMX. The sulfonamides existed predominantly as anions at the study pH of 6.8, which resulted in a low level of adsorption to the activated sludge. The adsorption/desorption isotherms were of a linear form, as well described by the Freundlich isotherm with the n value approximating unity. The linear distribution coefficients (Kd) were determined from batch equilibrium experiments with values of 28.6 ± 1.9, 55.7 ± 2.2, and 110.0 ± 4.6 mL/g for SMX, SMM, and SDM, respectively. SMX, SMM, and SDM desorb reversibly from the activated sludge leaving behind on the solids 0.9%, 1.6%, and 5.2% of the original sorption dose of 100 μg/L. The sorbed antibiotics can be introduced into the environment if no further treatments were employed to remove them from the biomass.  相似文献   

17.
C.F. Forster 《Water research》1985,19(10):1265-1271
Extra cellular polymers (ECP) were extracted from a series of activated sludges which were obtained from a number of full-time plants. The sludges had settlement properties characterized by SSVI values (measured at 3.5 g 1?1) ranging from 63 to 260. The metal binding properties of these polymers were examined by two methods; gel filtration and equilibrium analysis. This enabled three parameters to be quantified for each of the ECPs; the conditional stability constants for the metal/polymer sites, the number of binding sites per molecule of polymer and the complexation capacities of the ECPs. In addition, the equilibrium analysis method enabled an assessment to be made as to the number of types of binding site existing for any metal/polymer series. The gel filtration results show that the affinity series (based on stability constants) varied randomly as the SSVI varied and that the number of binding sites did not show any particular pattern in relation to settlement. The equilibrium analysis results show that whilst copper, zinc and chromium exhibit a similar behaviour at all SSVI values, the way in which nickel behaves depends on the settlement properties of the sludge.  相似文献   

18.
The investigation was designed to demonstrate the viability, or otherwise, of slow sand filtration as a means of tertiary treatment for secondary effluents derived from conventional aerobic, biological treatment processes operating with municipal wastewaters. Secondary effluents derived from both an activated-sludge plant and from a percolating filtration plant were employed.The basic slow sand filtration unit used consisted of a 140 mm i.d. perspex cylinder, 2.65 m in height containing a 950 mm depth of fine sand. Treatment rates were either 3.5 or 7.0 m d−1 and the sand used was of an effective size initially of 0.3 mm and then later of 0.6 mm.This investigation has demonstrated that a laboratory-scale slow sand filtration unit is capable of consistently removing at least 90% of the suspended solids, more than 65% of the remaining BOD and over 95% of the coliform organisms from the settled effluent from an operational percolating filter plant. The length of operational run averaged 20 days at 3.5 m d−1 and 13 days at 7.0 m d−1. Slightly inferior results were achieved when using the settled effluent from an operational activated sludge unit.Further investigation employing a horizontal-flow gravel pre-filter demonstrated that at flows of 2 m h−1 with a contact time of 33 min up to 82% of the suspended solids in the secondary effluent could be removed prior even to slow sand filtration.  相似文献   

19.
S Bayr  J Rintala 《Water research》2012,46(15):4713-4720
Anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge were studied for the first time in semi-continuously fed continuously stirred tank reactors (CSTR) in thermophilic conditions. Additionally, in batch experiments, methane potentials of 210 and 230 m3CH4/t volatile solids (VS)added were obtained for primary, and 50 and 100 m3CH4/tVSadded for secondary sludge at 35 °C and 55 °C, respectively. Anaerobic digestion of primary sludge was shown to be feasible with organic loading rates (OLR) of 1-1.4 kgVS/m3d and hydraulic retention times (HRT) of 16-32 d resulting in methane yields of 190-240 m3CH4/tVSfed. Also the highest tested OLR of 2 kgVS/m3d and the shortest HRT of 14-16 d could be feasible, if pH stability is confirmed. Co-digestion of primary and secondary sludge with an OLR of 1 kgVS/m3d and HRTs of 25-31 d resulted in methane yields of 150-170 m3CH4/tVSfed. In the digestion processes, cellulose and hemicellulose degraded while lignin did not. pH adjustment and nitrogen deficiency needs to be considered when planning anaerobic digestion of pulp and paper mill wastewater sludges.  相似文献   

20.
Ge H  Jensen PD  Batstone DJ 《Water research》2011,45(4):1597-1606
It is well established that waste activated sludge with an extended sludge age is inherently slow to degrade with a low extent of degradation. Pre-treatment methods can be used prior to anaerobic digestion to improve the efficiency of activated sludge digestion. Among these pre-treatment methods, temperature phased anaerobic digestion (TPAD) is one promising method with a relatively low energy input and capital cost. In this study, an experimental thermophilic (50-70 °C)-mesophilic system was compared against a control mesophilic-mesophilic system. The thermophilic-mesophilic system achieved 41% and 48% volatile solids (VS) destruction during pre-treatment of 60 °C and 65 °C (or 70 °C) respectively, compared to 37% in the mesophilic-mesophilic TPAD system. Solubilisation in the first stage was enhanced during thermophilic pre-treatment (15% at 50 °C and 27% at 60 °C, 65 °C and 70 °C) over mesophilic pre-treatment (7%) according to a COD balance. This was supported by ammonia-nitrogen measurements. Model based analysis indicated that the mechanism for increased performance was due to an increase in hydrolysis coefficient under thermophilic pre-treatment of 60 °C (0.5 ± 0.1 d−1), 65 °C (0.7 ± 0.2 d−1) and 70 °C (0.8 ± 0.2 d−1) over mesophilic pre-treatment (0.2 ± 0.1 d−1), and thermophilic pre-treatment at 50 °C (0.12 ± 0.06 d−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号