首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中低压缩性土地区桩承式加筋路堤现场试验研究   总被引:3,自引:0,他引:3  
将桩承式加筋路堤技术应用于中低压缩性土地区高速铁路桥台和涵洞之间填方路基的处理,通过逐渐改变CFG桩桩长形成刚度均匀变化的地基加固区,严格控制线路纵向差异沉降。通过现场试验对桥台、涵顶和路基中心地基沉降进行了长期观测,同时对桩承式加筋路堤桩间土沉降、孔隙水压力、格栅上下表面土压力和格栅变形进行了长期监测分析。研究结果表明:桩承式加筋路堤可有效减小中低压缩性土地基沉降,总沉降小且很快趋于稳定;桩承式加筋路堤通过土拱效应和张拉膜效应将路堤荷载向桩帽传递,格栅下桩土应力比明显高于格栅上,张拉膜效应明显,格栅上桩土应力比接近1.0,土拱效应较弱;格栅在路肩处发挥的作用强于线路中心处。  相似文献   

2.
通过对不同含水量和不同围压下的贵阳红黏土进行三轴固结不排水试验,系统地研究了贵阳红黏土的软化特性及孔隙水压力的变化规律。试验结果表明:贵阳红黏土破坏形态具有明显的剪切带;应力-应变曲线出现了带有驼峰的应变软化现象,固结过程中孔隙水压力与时间呈指数函数关系,剪切过程中孔隙水压力与轴向应变呈双曲线型。研究认为,土体的结构屈服应力和固结不排水试验中产生的孔隙水压力是造成贵阳红黏土软化的主要因素。根据沈珠江、张尔齐等人的软化模型,对贵阳红黏土进行拟合,求解模型参数及置信区间,为贵阳红黏土进一步的数学模型建立提供理论基础。  相似文献   

3.
桩承式加筋路堤受力机理及沉降分析   总被引:14,自引:0,他引:14  
作为一种经济、有效的软土地基处理方法,桩承式加筋路堤在国内外已开始使用。把单桩处理区域及上部路堤等效为圆桩体,采用弹塑性有限元法分析了瞬时加载后地基中超静孔隙水压力的分布特征及消散过程,研究了加筋格栅的受力和路堤的沉降特性等,分析了桩长、桩间距及桩托板大小对桩体荷载分担比和路堤沉降的影响。研究结果表明,打桩后桩体所受荷载向下传递,地基中的初始最大孔隙水压力出现在桩端以下土层。打穿软土层情况下,路堤的沉降量决定于浅部桩间土的压缩,而未打穿情况下,路堤的沉降量决定于桩端以下软土层的压缩。桩长是控制路堤沉降的最主要因素,其次是桩间距和桩托板尺寸。最后对一个工程实例进行了分析。  相似文献   

4.
加筋软岩粗粒土路堤填料大型三轴试验研究   总被引:2,自引:0,他引:2  
 为研究加筋粗粒土填料的强度变形特性及加筋效果,进行加筋强风化软岩粗粒土固结不排水和固结排水大三轴试验。试验表明:加筋填料的应力–应变关系表现为应变硬化型;轴向应变较小(ea<1%)时,加筋填料效果不明显,随着轴向应变的逐渐增大加筋效果逐渐发挥。加筋填料的孔隙水压力均高于素填料,随着加筋层数的增加均有不同程度的提高。加筋效果系数均>1.0,一层加筋填料加筋效果系数为1.09~1.21,二层加筋填料加筋效果系数为1.30~1.71,三层加筋填料加筋效果系数为1.31~1.72。加筋前后填料的内摩擦角j基本不变,填料的黏聚力增大。加筋填料的本构关系可以用Duncan-Chang模型来描述,依据试验结果求得模型参数。  相似文献   

5.
含超径颗粒土石混合体的大型三轴剪切试验研究   总被引:1,自引:0,他引:1  
 为研究土石混合体在含超径颗粒情况下的力学响应,利用大型三轴剪切试验仪,分别对体积含石量为25%,35%的非常规土石混合体试样在3种不同围压条件下进行固结不排水剪切试验。试验结果显示:含超径颗粒土石混合体在不排水剪切条件下仍然存在体积变化;含石量35%的土石混合体在围压较高情况下,体应变表现为加载初期剪缩,随后剪胀,二次剪缩,再次剪胀的特征;含石量25%的土石混合体的应力–应变曲线较为平滑,但含石量在35%的情况下,应力–应变曲线则呈现锯齿状特征,且伴随着间接性的应力跳跃现象,相应的体应变、孔隙水压力也出现跳跃现象,且与试样的应力变化具有很好的对应关系。  相似文献   

6.
In this study, a series of cyclic triaxial tests were conducted to study the accumulated strain of coarse-grained soil reinforced with geogrids, and the effect of the number of geogrid layers, confining pressure and cyclic stress amplitude was investigated in detail. The test results show that the final accumulated axial strain of the soils reinforced with geogrids is less than that without reinforcement, and less accumulated axial strain is generated for the specimens with more geogrid layers under identical cyclic loading. The results also show that a higher confining pressure or a lower cyclic stress amplitude yields less accumulated axial strain for the reinforced soils. Furthermore, the plastic shakedown limits are determined by the criterion proposed by Chen et al. It indicates that the plastic shakedown limit increases significantly when one layer of geogrid is incorporated into the specimen and then tends to level off with a continuous increase in the number of geogrid layers. Moreover, a higher confining pressure yields a higher plastic shakedown limit for the soils reinforced with geogrid. The results demonstrated that the use of geogrid can be an effective method to reduce the accumulated deformation of subgrade filling materials under high-cycle traffic loading.  相似文献   

7.
基坑中土的应力路径与强度指标以及关于水的一些问题   总被引:1,自引:1,他引:0  
 基坑开挖是在原状土层中进行的,其地基土的应力路径既不同于常规挡土墙中土的应力路径,也不同于室内常规三轴压缩试验中试样的应力路径。基坑工程中,支挡结构物前、后土体的平均主应力或者某些方向的主应力常常是减少的,对于饱和黏性土的固结不排水三轴试验,可能产生负的超静孔隙水压力,从而会影响土的抗剪强度指标。本文指出,对于黏性土中的基坑,在近期施加的墙后地面超载q,以及欠固结土地基的情况下,使用固结不排水(或固结快剪)强度指标计算土压力与进行稳定分析是偏于不安全的;同时指出,重力式水泥土墙的抗滑移和抗倾覆稳定验算,以及用瑞典圆弧法进行整体稳定验算时,对于饱和黏性土,如使用固结不排水强度指标,其抗力部分中的自重应按浮重度计算。结合对《建筑基坑支护技术规程》(JGJ 120-201?)报批稿进行的一些讨论,分析在基坑支挡结构计算中水压力的作用,提出地基土为粉土时,水土压力分算还是合算取决于其下土层的性质。  相似文献   

8.
路桥过渡段桩承式加筋路堤现场试验研究   总被引:6,自引:0,他引:6  
桩承式加筋路堤与路堤填土加筋技术联合应用于黄土地区路桥过渡段,减小路桥过渡段差异沉降和桥头跳车现象。通过 现场试验 对桩承式加筋路堤中心轴和路肩对应位置处格栅上、下表面桩顶和桩间土土压力、桩间格栅变形以及加筋路堤各断面格栅上、下表面土压力和格栅变形进行监测分析,研究结果表明:桩承式加筋 路堤通过土拱效应和张拉膜效应将路堤荷载向桩顶转移,从而可有效减小桩间土荷载;桩承式加筋路堤中心轴处路堤荷载转移主要以土拱效应为主,以张拉膜效应为辅,而路肩处格栅张拉膜效应较显著,路堤荷载传递由土拱效应和张拉膜效应共同完成,格栅在路肩处发挥作用效果大于路堤中心轴处;路堤加筋技术在桥台附近减载作用明显,随着距桥台距离的增加,减载作用逐渐减弱。  相似文献   

9.
地工格网(以下称格网)用於加劲土壤时,除考虑无围压下的张力行为之外,围压下之力学性质更是设计考量的重点。实际工程应用而言,基於经济考虑,期以现地土壤作为回填材料。本研究分别以拉出、围压抗张与直剪三种试验来探讨格网放土壤中之力学行为;并利用凝聚性泥岩与非凝聚性细砂作为回填材料,评估两种回填材料对加劲成效之影响。结果显示,柔性格网之肋条在拉出过程中易扭曲,造成主应力面旋转的现象,以致拉出阻抗大放硬性格网;围压下格网抗张的应力-应变行为可分为三阶段,即束制阻抗期、张力发展期与破坏期。束制阻抗期大都於3%应变内即已完成;在低围压情况拉出阻抗达20%~60%之拉出强度(相同应变),在高围压下达150%。由直接剪力试验结果可以预测:(a)格网/泥岩加劲结构-低围压时,剪力破坏面应通过格网/泥岩之界面;而高围压时,剪力破坏面应通过泥岩上体。(b)格网/细砂加劲结构-低围压与高围压下剪力破坏面应通过格网/细砂之界面。  相似文献   

10.
为了研究动静荷载下,加筋长度及筋材类型变化对加筋土挡墙工作性能的影响,进行了7种工况下的加筋土挡墙模型试验,对比分析了加筋土挡墙的水平土压力、水平土压力系数、墙面水平位移和加载板竖向沉降及筋材应变等参数的发展规律。试验结果表明:动载下加筋土挡墙筋材应变随着加载时间的增长、加筋长度的减小、位置高度的增加而增大,且顶层筋材应变远远大于其他层;加筋长度及筋材横肋的减少明显降低挡墙的承载性能,格栅横肋减少导致挡墙极限承载力降低18% ,加筋长度减少使面板水平位移最大增大了2.2倍;与静载作用下相比,动载下土工格栅的侧向约束作用及网兜效应能够得到更好地发挥。  相似文献   

11.
针对红砂岩粗粒土在不同加筋情况下,分别进行了不同围压条件的大三轴剪切试验。对各试样的抗剪强度特征和破坏形式进行了深入分析和比较,并以此为基础,对土工格栅加筋红砂岩粗粒土的加筋机理进行深入研究。指出加筋可以有效地提高红砂岩的黏聚力,但对摩擦角提高的贡献不大;同时指出工程设计与施工中,应尽量控制工程含水率在最佳含水率左右。  相似文献   

12.
土工网在桥头引道路堤中的应用研究   总被引:2,自引:0,他引:2  
以室内试验研究了路基土与土工网之间的综合摩阻力、张力膜效应及不同土工网铺设间距对复合土反应模量的影响,并依托上海市城市外环线1期工程,研究了桥头引道加筋路堤和不加筋路堤的地基顶面垂直土压力、水平土压力、地基顶面沉降、路堤坡脚侧向位移和路面工后沉降等.结果表明,将土工网加筋路堤用于解决桥头跳车效果明显。  相似文献   

13.
现有基坑支护设计参数试验条件与实际不符。选取天津滨海新区海相软土为研究对象,进行三轴固结不排水试验、三轴不固结不排水试验和减p路径试验并对比分析了几种试验条件下土的强度参数。得到:滨海软土在不同应力路径下的强度与初期固结方式有关。减p路径对总应力状态下抗剪强度有影响,但对有效应力状态下抗剪强度基本无影响。在滨海软土基坑支护设计中,选用CU试验参数进行计算,设计偏于安全。  相似文献   

14.
《Soils and Foundations》2021,61(5):1453-1463
This study investigates the effect of initial water content on the pore pressure response and undrained shear behavior of K0 consolidated reconstituted clay. A series of K0 consolidated undrained triaxial compression tests were conducted on reconstituted Lianyungang clay. Results were compared to those obtained by isotropic consolidated undrained triaxial tests. The testing results showed that the K0 consolidated undrained strength envelope of reconstituted soil content is a straight line passing through the origin regardless of the initial water content. The initial water content would affect the undrained strength of K0 consolidated clay as decreased normalized undrained shear strength was observed with clay at higher initial water content. The slope C of normalized pore pressure and stress ratio is affected by the consolidation method, where C is found to be a soil constant for K0 consolidated clay and the value would be higher with clay under K0 consolidation. The pore pressure increases with increasing initial water content at a certain axial strain under given consolidation pressure, and the difference in excess pore pressure increases with the increasing consolidation pressure. Pore pressure coefficient at failure (Af) increases as the initial water content increases, where a trendline can be well fitted between the pore coefficient at failure and the ratio of initial water content to the liquid limit of clay. The undrained strength indexes, i.e., effective cohesion and effective internal friction angle have decreasing tendency with increasing initial water content; however, changes in the total strength indexes of soil in this study are insignificant with varying initial water content.  相似文献   

15.
通过土体三轴受压条件下的无侧向静止土压力系数和摩尔-库仑定理,将加筋粘土体在三轴受压条件下的总体抗剪承载力分为加筋土体发生侧向变形前的承载力和与土工格栅密切相关的土体发生侧向变形后的承载力两部分进行研究.通过不同含水量下加筋粘土的三轴试验及其所得相关数据,提出了利用加筋土体发生侧向变形后的抗剪承载力与极限抗剪承载力的比值p2随加筋层数的变化情况作为评价加筋效果的重要指标.试验结果表明,当粘性土在最优含水量状态下时,其加筋效果最为显著.  相似文献   

16.
Large size direct shear tests (i.e.300 × 300 × 200 mm) were conducted to investigate the possibility of strength enhancement of clays reinforced with geogrids embedded in thin layers of sand. In this paper test results for the clay, sand, clay–sand, clay–geogrid, sand–geogrid and clay–sand–geogrid samples are presented and discussed. Thin sand layers with thicknesses of 4, 6, 8, 10, 12 and 14 mm were used to quantify their effect on the interaction between the clay and the geogrids. In this regard effects of sand layer thickness, normal pressure (i.e. confinement) and transversal members of geogrids were investigated. All the tests were conducted using saturated clay with no drainage allowed. Test results indicate that provision of thin layers of sand for encapsulating the geogrids is very effective in improving the strength and deformation characteristics of saturated clay. Maximum strength enhancement was derived at an optimum sand layer thickness of 10 mm which proved to be independent of the magnitude of the normal pressure used. For a particular sand layer thickness, increasing the normal pressure resulted in enhanced strength improvement. Results also showed that removal of the geogrid transversal members resulted in reducing the strength of the reinforced samples by 10% compared to geogrids with transversal members. Encapsulating geogrids in thin layers of sand not only will improve the performance of clays if used as backfill it would also provide drainage paths preventing pore water pressure generation on saturation of the backfill.  相似文献   

17.
The aim of this paper is to study the effect of geocomposite layers as internal drainage system on the behaviour of geogrid reinforced soil walls with marginal backfills using centrifuge and numerical modelling. A series of centrifuge model tests were carried out using a 4.5 m radius beam centrifuge facility available at IIT Bombay. A seepage condition was imposed to all models to simulate rising ground water condition. Displacement and pore water pressure transducers were used to monitor the performance of all centrifuge models. A geogrid reinforced soil wall without any geocomposite layer experienced catastrophic failure soon after applying seepage due to the development of excess pore water pressure within the reinforced soil zone of the wall. In comparison, reinforced soil wall with two geocomposite layers at the bottom portion of the wall was found to have a good performance at the onset of seepage and by embedding four geocomposite layers up to the mid-height of the wall from bottom as a result of lowering phreatic surface much more effectively. For analysing further the observed behaviour of centrifuge model tests, stability and seepage analysis were conducted using SLOPE/W and SEEP/W software packages. A good agreement was found between the results of numerical analysis and observation made in centrifuge tests. The effect of number of geocomposite layers as well as its transmissivity was further analysed using parametric study. The results of parametric study revealed that the number of geocomposite layers plays a main role on the good performance of the geogrid reinforced soil walls with marginal backfill.  相似文献   

18.
 由于基坑开挖卸载,墙前被动区土体由正常固结状态转化为超固结状态,其固结不排水剪(CU)指标将发生变化,因此弹性地基梁计算理论应予以修正。根据超固结比(OCR)与不排水强度、上覆土压力间关系,引入不排水强度与固结不排水剪(CU)指标间关系,逐步推导出多土层条件下超固结土CU指标的求解函数,将其应用于弹性地基梁“m”法计算理论,提出一种新的考虑分步开挖卸载后被动区黏性土超固结作用影响的m值修正计算法。武汉长江隧道工程有限元算例结果显示,随着超固结比增大,开挖面一定深度下各黏性土层CU指标、m值均有不同程度提高,其中粉土提高幅度尤为大,按该修正法计算出的支护体位移较未修正前更接近实测结果。  相似文献   

19.
Three centrifuge model tests were conducted to investigate the influence of the number of geosynthetic layers and the pile clear spacing on the global performance of Geosynthetic-Reinforced Pile-Supported (GRPS) embankments with side slopes constructed on soft soil foundations. This study found that the change of the geogrid number from one to two did not significantly affect the foundation settlement, the geogrid deflection, and the vertical stress at the embankment base. For the GRPS embankment with a single geogrid layer, the geogrid strain distribution at the embankment base showed an “M” shape along the transverse direction with the maximum strain near the embankment shoulder. When two geogrid layers with sand in between were used, the upper and lower layers showed different strain distributions with the maximum strains happening near the embankment shoulder and at the center of the embankment for the upper and lower layers respectively. The strains of the upper geogrid were smaller than those of the lower geogrid. Smaller pile clear spacing reduced the geogrid deflection and the foundation settlement. Despite the change of the pile clear spacing, the progressive development of soil arching with the normalized displacement at the embankment base followed a similar trend without an obvious stress recovery stage.  相似文献   

20.
软黏土三轴固结不排水剪试验数据处理方法   总被引:1,自引:0,他引:1  
三轴固结不排水剪(CU)试验的传统数据处理方法是根据破坏标准所确定的值直接绘制摩尔圆包线,确定土样的抗剪强度值。当遇到土性不匀或试验中某一试样扰动给试验带来误差时,其摩尔圆包线很难确定。归一化法、数值关系法、相关法3种特殊的试验成果处理方法,能更准确地确定CU试验的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号