共查询到19条相似文献,搜索用时 93 毫秒
1.
自然语言处理技术在文本分类、文本纠错等任务中表现出强大性能,但容易受到对抗样本的影响,导致深度学习模型的分类准确性下降。防御对抗性攻击是对模型进行对抗性训练,然而对抗性训练需要大量高质量的对抗样本数据。针对目前中文对抗样本相对缺乏的现状,提出一种可探测黑盒的对抗样本生成方法 WordIllusion。在数据处理与计算模块中,数据在删除标点符号后输入文本分类模型得到分类置信度,再将分类置信度输入CKSFM计算函数,通过计算比较cksf值选出句子中的关键词。在关键词替换模块中,利用字形嵌入空间和同音字库中的相似词语替换关键词并构建对抗样本候选序列,再将序列重新输入数据处理与计算模块计算cksf值,最终选择cksf值最高的数据作为最终生成的对抗样本。实验结果表明,WordIllusion方法生成的对抗样本在多数深度学习模型上的攻击成功率高于基线方法,在新闻分类场景的DPCNN模型上相比于CWordAttack方法最多高出41.73个百分点,且生成的对抗样本与原始文本相似度很高,具有较强的欺骗性与泛化性。 相似文献
2.
针对现有对抗样本生成方法需要大量访问目标模型,导致攻击效果较差的问题,提出了基于BERT(Bidirectional Encoder Representations from Transformers)模型的文本对抗样本生成方法(TAEGM)。首先采用注意力机制,在不访问目标模型的情况下,定位显著影响分类结果的关键单词;其次通过BERT模型对关键单词进行单词级扰动,从而生成候选样本;最后对候选样本进行聚类,并从对分类结果影响更大的簇中选择对抗样本。在Yelp Reviews、AG News和IMDB Review数据集上的实验结果表明,相较于攻击成功率(SR)次优的对抗样本生成方法CLARE(ContextuaLized AdversaRial Example generation model),TAEGM在保证对抗攻击SR的前提下,对目标模型的访问次数(QC)平均减少了62.3%,时间平均减少了68.6%。在此基础之上,进一步的实验结果验证了TAEGM生成的对抗样本不仅具有很好的迁移性,还可以通过对抗训练提升模型的鲁棒性。 相似文献
3.
4.
深度卷积神经网络在图像分类、目标检测和人脸识别等任务上取得了较好性能,但其在面临对抗攻击时容易发生误判。为了提高卷积神经网络的安全性,针对图像分类中的定向对抗攻击问题,提出一种基于生成对抗网络的对抗样本生成方法。利用类别概率向量重排序函数和生成对抗网络,在待攻击神经网络内部结构未知的前提下对其作对抗攻击。实验结果显示,提出的方法在对样本的扰动不超过5%的前提下,定向对抗攻击的平均成功率较对抗变换网络提高了1.5%,生成对抗样本所需平均时间降低了20%。 相似文献
5.
对抗样本能够作为训练数据辅助提高模型的表达能力,还能够评估深度学习模型的稳健性.然而,通过在一个小的矩阵范数内扰乱原始数据点的生成方式,使得对抗样本的规模受限于原始数据.为了更高效地获得任意数量的对抗样本,探索一种不受原始数据限制的对抗样本生成方式具有重要意义.鉴于此,提出一种基于生成对抗网络的对抗样本生成模型(multiple attack generative adversarial networks, M-AttGAN).首先,将模型设计为同时训练2组生成对抗网络,分别对原始数据样本分布和模型潜在空间下的扰动分布进行建模;然后,训练完成的M-AttGAN能够不受限制地高效生成带有扰动的对抗样本,为对抗训练和提高深度神经网络的稳健性提供更多可能性;最后,通过MNIST和CIFAT-10数据集上的多组实验,验证利用生成对抗网络对数据分布良好的学习能力进行对抗样本生成是可行的.实验结果表明,相较于常规攻击方法,M-AttGAN不仅能够脱离原始数据的限制生成高质量的对抗样本,而且样本具备良好的攻击性和攻击迁移能力. 相似文献
6.
针对人工蜂群算法(ABC)容易陷入局部极值点、进化后期收敛慢和优化精度较差等缺点。把模拟退火技术(SA)引入到ABC算法中,提出了一种改进的优化算法。混合优化算法在各温度下依次进行ABC和SA搜索,是一种两层的串行结构。由于ABC提供了并行搜索结构,所以,混合优化算法使SA转化成并行SA算法。SA的概率突跳性保证了种群的多样性,从而防止ABC算法陷入局部极小。基于模拟退火的改进人工蜂群算法保持了ABC算法简单容易实现的特点,改善了算法的全局优化能力,便于收敛的同时也可以防止算法陷入局部最优解。 相似文献
7.
为了克服人工蜂群算法在处理复杂性问题时收敛速度慢、收敛精度不高、易早熟等缺陷,在原始人工蜂群算法的基础上引入信息熵。信息熵本身是不确定性的一种度量,由信息熵的值来度量人工蜂群算法中跟随蜂选择的不确定性,通过控制信息熵的值达到控制算法中跟随蜂选择过程的目的,实现算法的自适应调节。通过对测试函数和不同规模TSP问题的模拟仿真,对人工蜂群算法、蚁群算法和其他改进方法进行了对比,验证了所提出改进方法的可行性和有效性。 相似文献
8.
利用深度神经网络实现自然语言处理领域的文本分类任务时,容易遭受对抗样本攻击,研究对抗样本的生成方法有助于提升深度神经网络的鲁棒性。因此,提出了一种单词级的文本对抗样本生成方法。首先,设计单词的重要性计算函数;然后,利用分类概率查找到单词的最佳同义替换词,并将两者结合确定单词的替换顺序;最后,根据替换顺序生成与原始样本接近的对抗样本。在自然语言处理任务上针对卷积神经网络、长短时记忆网络和双向长短时记忆网络模型进行的实验表明:生成的对抗样本降低了模型的分类准确率和扰动率,且经过对抗训练之后模型的鲁棒性有所提高。 相似文献
9.
无线传感器网络(Wireless Sensor Network,WSN)系统性能的提高,离不开对WSN中每一个传感器节点地理位置的精准定位。全局人工蜂群算法在基本人工蜂群算法的基础上,在邻域搜索后将迭代最优解添加到新解的更新公式中,提高了算法的开发能力。但将其应用于WSN节点位置求解时,存在计算时间长、收敛不稳定的问题。提出一种改进的全局人工蜂群算法,在邻域搜索后对新解进行衡量,若新解适应值在可接受的范围内,与迭代最优解进行交叉操作;若新解适应值较好,不与迭代最优解进行交叉操作;若新解适应值较差,舍弃新解。这较好地平衡了算法的探索和开发能力。求解WSN节点位置时,证明了该算法有更快的收敛速度和更好的收敛效果。 相似文献
10.
近年来,深度学习算法在各个领域都取得了极大的成功,给人们的生活带来了极大便利。然而深度神经网络由于其固有特性,用于分类任务时,存在不稳定性,很多因素都影响着分类的准确性,尤其是对抗样本的干扰,通过给图片加上肉眼不可见的扰动,影响分类器的准确性,给深度神经网络带来了极大的威胁。通过对相关对抗样本的研究,该文提出一种基于白盒攻击的对抗样本生成算法DCI-FGSM(Dynamic Change Iterative Fast Gradient Sign Method)。通过动态更新梯度及噪声幅值,可以防止模型陷入局部最优,提高了生成对抗样本的效率,使得模型的准确性下降。实验结果表明,在MINIST数据集分类的神经网络攻击上DCI-FGSM取得了显著的效果,与传统的对抗样本生成算法FGSM相比,将攻击成功率提高了25%,具有更高的攻击效率。 相似文献
11.
经典的人工蜂群(artificial bee colony, ABC)算法面临着收敛速度慢、易陷入局部最优等不足,因此基于该算法来进行特征选择还存在很多问题.对此,提出了一种基于粒度粗糙熵与改进蜂群算法的特征选择方法FS_GREIABC.首先,将粗糙集中的知识粒度与粗糙熵有机地结合起来,提出一种新的信息熵模型——粒度粗糙熵;其次,将粒度粗糙熵应用于ABC算法中,提出一种基于粒度粗糙熵的适应度函数,从而获得了一种新的适应度计算策略;第三,为了提高ABC算法的局部搜索能力,将云模型引入到跟随蜂阶段.在多个UCI数据集以及软件缺陷预测数据集上的实验表明,相对于现有的特征选择算法, FS_GREIABC不仅能够选择较少的特征,而且具有更好的分类性能. 相似文献
12.
针对人工蜂群算法在函数优化问题求解过程中容易陷入局部最优,收敛速度慢的缺点,提出了一种基于改进局部搜索策略的人工蜂群算法。该算法中跟随蜂采用基于当前最优解的混沌局部搜索策略,侦查蜂采用基于当前最优解的自适应侦查策略,并使其局部搜索范围随着迭代次数的增加逐渐减小,从而提高了人工蜂群算法的局部搜索能力,有效地避免了其陷入局部最优。6个测试函数的仿真实验结果表明,与传统的人工蜂群算法相比,改进后算法的求解精度和收敛速度明显提升。 相似文献
13.
14.
针对无人机(UAV)在复杂战场环境下的生存问题,提出了一种基于云模型的人工蜂群算法的航迹规划。在算法中引入一维正态云模型,利用云模型随机性和稳定性的特点来提高传统人工蜂群算法(ABC)的鲁棒性并避免陷入局部最优,同时引入一个新的概率选择策略来保证种群的多样性。采用改进算法来处理UAV的航迹规划问题时,首先将航迹规划问题通过建模转换成一个多维函数优化问题,然后结合云模型和ABC算法的优势,最后用UAV航迹规划任务对新算法进行测试。仿真实验验证了改进算法在解决UAV航迹规划上的可行性和优越性。 相似文献
15.
16.
17.
针对蚁群算法收敛速度慢、易陷入局部最优等问题,结合人工蜂群算法的分级思想,提出动态分级的双蚁态蚁群算法。根据适应度不同,将蚁群划分为寻优蚁和侦查蚁,并执行不同加权系数的动态信息素更新策略:寻优蚁负责较优路径的搜索,执行较大权重的信息素更新策略,以增强其导向性,提高算法收敛速度。侦查蚁则负责探索非较优路径,发现其他更优解,以保证算法多样性。然后,每次迭代结束则两类蚂蚁进行优良解交换,以提高解的质量。以旅行商问题为例,将其与经典蚁群算法、最新蚁群改进算法以及其他最新优化算法进行对比,其表现皆更优。 相似文献
18.
针对人工蜂群算法(Artificial Bee Colony algorithm,ABC)因直接采用函数值映射的概率选择食物源而引起过早收敛和陷入局部最优以及优化精度不高的问题,提出一种基于排名映射概率的混沌人工蜂群算法(Chaotic Artificial Bee Colony algorithm based on Rank mapping probability,CABC-R)。首先利用目标函数值的排名映射获取选择食物源的概率,然后构建基于排名映射概率的人工蜂群算法以便能够维持种群的多样性,获得较好的全局最优解,最后创建较高寻优精度的新型局部混沌优化算法精确寻找最优解。对10个标准测试函数进行了仿真,结果表明,CABC-R算法不仅优化效果更准确而且更能跳出局部最优,有效地找到全局最优解,优于标准的ABC、JADE、 MSEP 和 RABC算法。 相似文献
19.
针对RBF神经网络和支持向量机对果酒总黄酮软测量过程中,存在速度慢和精度低的缺点,提出了基于改进人工蜂群算法的果酒总黄酮软测量模型;该模型利用混沌变量的遍历性和随机性特点,对标准人工蜂群算法进行改进,在种群初始化阶段引入混沌机制,确保个体分布的均匀性,并用信息素和灵敏度模型代替轮盘赌选择策略,使模型避免了过早收敛和提前停滞;仿真实验结果表明,该模型提高了果酒总黄酮软测量的精度,具有收敛速度快,抗噪性较强的特点,便于实现果酒总黄酮的在线测量. 相似文献