共查询到19条相似文献,搜索用时 78 毫秒
1.
局部线性嵌入算法(LLE)中常用欧氏距离度量样本间相似度。而对于图像等高维数据,欧氏距离不能准确体现样本间的相似程度。文中提出基于马氏距离度量的局部线性嵌入算法(MLLE)。算法首先从现有样本中学习到一个马氏度量,然后在LLE算法的近邻选择、现有样本及新样本降维过程中用马氏度量作为相似性度量。将MLLE算法及其它典型的流形学习算法在ORL和USPS数据库上进行对比实验,结果表明MLLE算法具有良好的识别性能。 相似文献
2.
局部线性嵌入算法改进研究 总被引:1,自引:0,他引:1
局部线性嵌入算法(Locally Linear Embedding LLE)是一种功能强大的数据降维方法,但它在处理稀疏数据源时的失效问题限制了其广泛应用,且至今没有一个完善的解决方案.为解决这一问题,从算法原理和执行过程两方面分析算法失效原因,把算法的两个优化过程联合优化,对算法进行改进.通过对S曲线稀疏采样模拟稀疏数据源,把改进前后的算法对样本点实验结果进行对比,验证了算法改进的有效性;同时,用改进后的算法处理人脸数据,展示了改进后算法的实用价值.改进后的算法将进一步促进局部线性嵌入在工程和研究领域的应用,极大地改善了算法的性能. 相似文献
3.
局部线性嵌入算法(LLE)因其较低的计算复杂度和高效性适用于很多降维问题,新的自适应局部线性嵌入(ALLE)算法对数据进行非线性降维,提取高维数据的本质特征,并保持了数据的全局几何结构特征,对比实验结果表明了该算法对于非理想数据的降维结果均优于LLE算法。 相似文献
4.
局部线性嵌入算法(LLE)中常用欧氏距离来度量样本间相似度,而对于具有低维流形结构的高维数据,欧氏距离不能衡量流形上两点间相对位置关系。提出基于Geodesic Rank-order距离的局部线性嵌入算法(简称GRDLLE)。应用最短路径算法(Dijkstra算法)找到最短路径长度来近似计算任意两个样本间的测地线距离,计算Rank-order距离用于LLE算法的相似性度量。将GRDLLE算法、其他改进LLE的流形学习算法及2DPCA算法在ORL与Yale数据集上进行对比实验,对数据用GRDLLE算法进行降维后人脸识别率有所提高,结果表明GRDLLE算法具有很好的降维效果。 相似文献
5.
基于局部线性逼近的流形学习算法 总被引:1,自引:1,他引:1
流形学习方法是根据流形的定义提出的一种非线性数据降维方法,主要思想是发现嵌入在高维数据空间的低维光滑流形.局部线性嵌入算法是应用比较广泛的一种流形学习方法,传统的局部线性嵌入算法的一个主要缺点就是在处理稀疏源数据时会失效,而实际应用中很多情况还要面对处理源数据稀疏的问题.在分析局部线性嵌入算法的基础上提出了基于局部线性逼近思想的流形学习算法,其通过采用直接估计梯度值的方法达到局部线性逼近的目的,从而实现高维非线性数据的维数约简,最后在S-曲线上进行稀疏采样测试取得良好降维效果. 相似文献
6.
局部线性嵌入算法(Local Linear Embedding,简称LLE)是一种非线性流形学习算法,能有效地学习出高维采样数据的低维嵌入坐标,但也存在一些不足,如不能处理稀疏的样本数据.针对这些缺点,提出了一种基于局部映射的线性嵌入算法(Local Project Linear Embedding,简称LPLE).通过假定目标空间的整体嵌入函数,重新构造样本点的局部邻域特征向量,最后将问题归结为损失矩阵的特征向量问题从而构造出目标空间的全局坐标.LPLE算法解决了传统LLE算法在源数据稀疏情况下的不能有效进行降维的问题,这也是其他传统的流形学习算法没有解决的.通过实验说明了LPLE算法研究的有效性和意义. 相似文献
7.
8.
《计算机应用与软件》2013,(4)
为了提高人脸识别算法的识别率,提出一种基于监督局部线性嵌入SLLE(Supervised Locally Linear Embedding)的人脸图像识别方法。对局部线性嵌入LLE(Locally Linear Embedding)算法进行改进:①计算低维嵌入时,给稀疏矩阵M先加上一个单位阵,然后再计算它的特征值和特征向量,较好地解决了矩阵奇异问题;②针对LLE算法非监督的缺陷,在构造邻域的时候,增加数据的类别信息,根据其所属类别来判断样本的近邻。在Yale和ORL人脸库上的实验结果表明,该算法能够有效地提高人脸识别的性能。 相似文献
9.
基于自适应近邻参数的局部线性嵌入 总被引:2,自引:0,他引:2
局部线性嵌入算法是一种有效的非线性降维方法。文中提出一种自适应的局部线性嵌入方法。该方法通过分析数据集中任意样本所在局部区域的线性重构误差,确定该局部区域的近似线性块,然后根据位于此局部线性块上的样本来选择局部线性嵌入的近邻参数。实验结果表明,在不同的数据集上,采用多个评价标准,自适应的局部线性嵌入方法相比普通的局部线性嵌入方法,取得更好的结果。 相似文献
10.
黄东 《计算机工程与应用》2012,48(11):185-188
非线性流形学习降维方法已经被广泛应用到人脸识别、入侵检测以及传感器网络等领域。然而,能够有效处理稀疏数据的流形学习算法很少。基于局部线性嵌入(LLE)算法的思想框架,提出一种扩大局部邻域的稀疏嵌入算法,通过对局部区域信息加强,使得在样本较少的情况下,达到丰富重叠信息的目的。在稀疏的人工和人脸数据集上的实验结果表明,所提算法产生了较好的嵌入及分类结果。 相似文献
11.
语音信号转换到频域后维数较高,流行学习方法可以自主发现高维数据中潜在低维结构的规律性,提出采用流形学习的方法对高维数据降维来进行汉语数字语音识别。采用流形学习中的局部线性嵌入算法提取语音频域上高维数据的低维流形结构特征,再将低维数据输入动态时间规整识别器进行识别。仿真实验结果表明,采用局部线性嵌入算法的汉语数字语音识别相较于常用声学特征MFCC维数要少,识别率提高了1.2%,有效提高了识别速度。 相似文献
12.
目前大多数流形学习算法无法获取高维输入空间到低维嵌入空间的映射,无法处理新增数据,因此无增量学习能力。而已有的增量流形学习算法大多是通过扩展某一特定的流形学习算法使其具备增量学习能力,不具有通用性。针对这一问题,提出了一种通用的增量流形学习(GIML)算法。该方法充分考虑流形的局部平滑性这一本质特征,利用局部主成分分析法来提取数据集的局部平滑结构,并寻找包含新增样本点的局部平滑结构到对应训练数据的低维嵌入坐标的最佳变换。最后GIML算法利用该变换计算新增样本点的低维嵌入坐标。在人工数据集和实际图像数据集上进行了系统而广泛的比较实验,实验结果表明GIML算法是一种高效通用的增量流形学习方法,且相比当前主要的增量算法,能更精确地获取增量数据的低维嵌入坐标。 相似文献
13.
流形学习方法是根据流形的定义提出的一种非线性数据降维方法,主要思想是发现嵌入在高维数据空间的低维光滑流形。从分析基于流形学习理论的局部线性嵌入算法入手,针对传统的局部线性嵌入算法在源数据稀疏时会失效的缺点,提出了基于局部线性逼近思想的流形学习算法,并在S-曲线上采样测试取得良好降维效果。 相似文献
14.
15.
16.
流形学习已成为机器学习和数据挖掘领域的研究热点。比如,算法LLE(Locally Linear Embedding)作为一种非线性降维算法有很好的泛化性能,被广泛地应用于图像分类和目标识别,但其仅仅假设了数据集处于单流形的情况。MM-LLE(Multiple Manifold Locally Linear Embedding)学习算法作为一种考虑多流形情况的改进算法,依然存在几点不足之处。因此,提出改进的MM-LLE算法,通过任意两类间的局部低维流形组合并构建分类器来提高分类精度;同时改进原算法计算最佳维度的方法。通过与算法ISOMAP、LLE以及MM-LLE比较分类精度,实验结果验证了改进算法的有效性。 相似文献
17.
18.
19.
一种半监督局部线性嵌入算法的文本分类方法* 总被引:3,自引:0,他引:3
针对局部线性嵌入算法(LLE)应用于非监督机器学习中的缺陷,将该算法与半监督思想相结合,提出了一种基于半监督局部线性嵌入算法的文本分类方法。通过使用文本数据的流形结构和少量的标签样本,将LLE中的距离矩阵采用分段形式进行调整;使用调整后的矩阵进行线性重建从而实现数据降维;针对半监督LLE中使用欧氏距离的缺点,采用高斯核函数将欧氏距离进行变换,并用新的核距离取代欧氏距离,提出了基于核的半监督局部线性嵌入算法;最后通过仿真实验验证了改进算法的有效性。 相似文献