首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
提出了一种用双圆弧对二次均匀B样条曲线的分段逼近方法。首先,对一条具有n 1个控制顶点的二次均匀B样条曲线按照相邻两节点界定的区间分成n-1段只有三个控制顶点的二次均匀B样条曲线段;然后对每一曲线段构造一条双圆弧进行逼近。所构造的双圆弧满足端点及端点切向量条件,即双圆弧的两个端点分别是所逼近的曲线段的端点,而且双圆弧在两个端点处的切向量是所逼近的曲线段在端点处的单位切向量。同时,双圆弧的连接点是双圆弧连接点轨迹圆与其所逼近的曲线段的交点。这些新构造出来的双圆弧连接在一起构成了一条圆弧样条曲线,即二次均匀B样条曲线的逼近曲线。另外给出了逼近误差分析和实例说明。  相似文献   

2.
为了更好地对曲线进行自动光顺,针对一般的非均匀B样条曲线,提出一种基于非均匀B样条小波的曲线光顺算法.首先将曲线分解为尺度部分和细节部分,并把细节部分再次分解为小波尺度部分和小波细节部分;然后通过自动设定阈值对小波细节部分进行修复,并通过小波重构得到新的控制顶点;最后对新的控制顶点进行迭代计算,直至达到满意的光顺效果.通过设定光顺误差限,采用该算法可以在计算机上对曲线进行自动光顺操作.实例验证表明,文中算法比其他基于小波的曲线光顺方法具有更好的光顺效果.  相似文献   

3.
刘亚利  高世伟  郭玉辉 《微计算机信息》2007,23(24):196-197,148
首先介绍了小波变换的基本原理,并在此基础上说明了如何根据所要分析的信号设计双正交小波。实践结果表明,将基于特定信号设计的双正交小波变换技术应用到图像处理上会有很好的效果。  相似文献   

4.
提出了一种基于非均匀B样条小波变换的数字水印嵌入与提取算法,并通过实验分析了其鲁棒性。由于利用非均匀B样条小波对图像进行分解可以得到小于原图的任意大小的低分辨子图,因而利用方法可以方便地嵌入小于载体图像的任意大小的二值水印,并可以盲提取。实验结果表明,该算法具有较强的抗各种常见攻击的鲁棒性。  相似文献   

5.
文章利用小波多分辨理论,提出了任意比例放大曲线的方法.该算法简单,放大后的曲线失真小且比较光滑.同时,在理论上讨论了适于放大缩小曲线的小波基应具有的特征.理论和实验结果均说明双正交B样条小波和半正交B样条小波具有较好的几何特征,适于本文算法.  相似文献   

6.
7.
基于小波的B样条曲线多分辨表示及编辑   总被引:8,自引:3,他引:8  
多分辨表示方法为曲线提供了更为灵活的表达方式,使得我们可以在不同分辨率下对曲线进行编辑,小波技术是实现曲线多分辨表示的一种新颖方法,已有许多论文从理论上论述了这项技术,文中从几何概念出发,由浅入深地论述了基于小波的准均匀三次B样条曲线多分辨表示的原理及其实现,并通过实例描述了B样条曲线的多分辨编辑。  相似文献   

8.
9.
考虑到插值算法增减节点困难,传统逼近算法精度不够等缺点,有文献提出一种基于三次B样条的曲线逼近算法。该算法通过迭代逼近,提高了计算速度与精度。在系统研究此算法的基础上,将该算法推广到四次B样条,使其具有三阶可导性,并给出该算法收敛性的理论证明。最后用该算法对常用函数进行逼近效果实验。结果表明,所提出的四次B样条的曲线逼近算法收敛速度更快,且能够满足更高精度的实际工业生产需要。  相似文献   

10.
等距曲线的三次B样条保形逼近   总被引:5,自引:2,他引:5  
本文给出了巧妙地运用三顶点共线技巧构造插值三次B样条保形曲线,并用其逼近等距曲线,本文最后给出了几个实例。  相似文献   

11.
提出通过非均匀B样条曲面的小波分解以及能量法的结合对曲面光顺的算法。小波分解实现了数据的压缩,提高了算法的效率;同时结合能量法对分解后曲面的细节部分进行边界约束光顺处理。最后用实例验证了算法的有效性。  相似文献   

12.
《国际计算机数学杂志》2012,89(7):1602-1616
In this paper, we propose the linear semiorthogonal compactly supported B-spline wavelets as a basis functions for the efficient solution of linear Fredholm integral equations of the second kind. The method of moments (MOM) is utilized via the Galerkin procedure and wavelets are employed as test functions.  相似文献   

13.
《国际计算机数学杂志》2012,89(8-9):685-694
A numerical technique for solving a second-order nonlinear Neumann problem is presented. The authors’ approach is based on semi-orthogonal B-spline wavelets. Two test problems are presented and numerical results are tabulated to show the efficiency of the proposed technique for the studied problem.  相似文献   

14.
Control point adjustment for B-spline curve approximation   总被引:1,自引:0,他引:1  
Pottmann et al. propose an iterative optimization scheme for approximating a target curve with a B-spline curve based on square distance minimization, or SDM. The main advantage of SDM is that it does not need a parameterization of data points on the target curve. Starting with an initial B-spline curve, this scheme makes an active B-spline curve converge faster towards the target curve and produces a better approximating B-spline curve than existing methods relying on data point parameterization. However, SDM is sensitive to the initial B-spline curve due to its local nature of optimization. To address this, we integrate SDM with procedures for automatically adjusting both the number and locations of the control points of the active spline curve. This leads to a method that is more robust and applicable than SDM used alone. Furthermore, it is observed that the most time consuming part of SDM is the repeated computation of the foot-point on the target curve of a sample point on the active B-spline curve. In our implementation, we speed up the foot-point computation by pre-computing the distance field of the target curve using the Fast Marching Method. Experimental examples are presented to demonstrate the effectiveness of our method. Problems for further research are discussed.  相似文献   

15.
提出了一种基于Hilbert扫描和二次B样条曲线逼近的图像压缩方法。首先利用Hilbert扫描曲线将二维数字图像转化为一维的灰度序列;然后采用二次B样条曲线对数据进行分段逼近,同时利用逼近的最大绝对误差小于最大允许误差来确定最终分段;最后对每段数据的逼近参数进行编码。实验结果表明,该方法获得的压缩效果较好,且计算量适中,是一种简单有效的数字图像压缩方法。  相似文献   

16.
基于轮廓数据的B样条曲面重建   总被引:1,自引:0,他引:1       下载免费PDF全文
针对B样条曲面拟合中出现的问题和困难,提出了一种基于行组织的轮廓数据(截面数据)的曲面重建方法。该方法避免了数据点的参数化问题,使得逼近曲面拥有较好的形状和合理的控制顶点数量。该方法的基本思想是:首先构造易于控制的低阶曲面拟合数据点,此曲面称控制曲面,然后利用高次曲面逼近该曲面,此高次曲面称为逼近曲面,为所需要的重建曲面。在曲面重建中利用最佳平方逼近和光顺函数,减少了逼近曲面的控制顶点冗余,较有效地防止了逼近曲面的形状突变和曲面的扭曲,很大程度地提高了曲面的质量。  相似文献   

17.
Curve reconstruction based on an interval B-spline curve   总被引:3,自引:0,他引:3  
Curve reconstruction that generates a piece of centric curve from a piece of planar strip-shaped point cloud is a fundamental problem in reverse engineering. In this paper, we present a new curve-reconstruction algorithm based on an interval B-spline curve. The algorithm constructs a rectangle sequence approximating the point cloud using a new data clustering technique, which facilitates the determination of curve order implied in the shape of the point cloud. A quasicentric point sequence and two pieces of boundary point sequences are then computed, based on which a piece of interval B-spline curve representing the geometric shape of the point cloud is constructed. Its centric curve is the final reconstructed curve. The whole algorithm is intuitive, simple, and efficient, as demonstrated by experimental results.  相似文献   

18.
基于渐进迭代逼近(PIA)的数据拟合方法以其简单和灵活的特性获得了广泛的关 注。为了获得高保真度的拟合曲线,提出了一种基于主导点选取和正则渐进迭代逼近(RPIA)的 自适应B 样条曲线拟合算法。首先根据数据点的曲率估计选取初始主导点并生成初始PIA 曲线。 然后,借助于拟合误差和数据点集的曲率分布选取加细的主导点及实现PIA 曲线的更新。得益 于基于曲率分布的主导点选取,使得拟合曲线在复杂区域分布较多的控制顶点,而在平坦区域 则较少。通过正则参数的引入构造了一种RPIA 格式,提升了渐进迭代控制的灵活性。最后, 数值算例表明相比于传统最小二乘曲线拟合该算法在使用较少数量的控制顶点时可实现较高的 拟合精度。  相似文献   

19.
Subdivision offers a way to increase the resolution of models, while reverse subdivision possesses the opposite ability. Combining the two theories could realize the multiresolution (MR) representation of models. Based on two ternary subdivision schemes, we present the trial and refined filters and an algorithm to realize MR representation for curves, which has some difference compared with the work relating to binary schemes. And the filters yield biorthogonal wavelet systems which are the underlying theory fundament of curves MR. By experiments and numerical calculations, we demonstrate that by using the ternary methods one can accomplish the MR representation for curves and the low-resolution results obtained by reverse subdivision can approximate the original curves well. Besides, ternary methods need smaller number of decomposition times than binary methods to get low-resolution results at similar levels of resolution for the same original curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号