首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
建立了电致发光测试方法,对一种国产GaInP/GaAs/Ge三结太阳电池1MeV电子辐照后各子电池的辐照特性进行了研究,并与光谱响应结果进行了比较。讨论了GaInP/GaAs/Ge三结太阳电池的辐射损伤机理。  相似文献   

2.
对AlGaAs/GaAs太阳电池进行了质子辐照和热退火实验.质子辐照的能量为325keV,辐照的剂量为5×1010-1×1013cm-2.实验结果表明,质子辐照造成了GaAs太阳电池光伏性能的退化,其中短路电流的退化比其它参数的退化更为明显.退火实验结果表明,200℃的低温退火可以使得辐照后的电池的光伏性能得以部分恢复.此外,实验结果还指出,在GaAs太阳电池表面加盖一层0.5mm的硼硅玻璃盖片可以明显地减少质子辐照对GaAs太阳电池性能的损伤.  相似文献   

3.
孙浩  徐建明  张宏超  杨欢  陆健 《激光技术》2018,42(2):239-244
为了研究真空环境下1070nm连续激光辐照对三结GaAs太阳电池输出性能的影响,利用COMSOL软件构建了相应物理模型,通过数值仿真研究了激光功率密度、光斑半径、减反膜和热辐射热对流对温度场的影响。结果表明,吸收系数、热导率和光电转换效率是温度演变的3个主要因素;温升幅度随激光功率密度增大而增大;光斑半径越小使得电池表面温差越大;拥有减反膜结构可有效地提高太阳电池转换效率,但也使电池温度较高;热对流散热在电池较低温度(300K~400K)情况下占据主导作用;当入射功率密度为16.7W/cm2、光斑半径与电池半径相同时,经20s后,电池中心温度达到501.521K,导致光电转换效率为0。该数值模拟结果与实验结果基本相符,对激光损伤太阳电池机理研究提供一定的理论依据。  相似文献   

4.
开展了单结GaAs太阳电池808 nm、10.6 m连续激光辐照实验研究,结果显示,相同激光耦合强度下两种激光对电池的损伤模式相似,且随着激光耦合强度逐渐提高,电池最大输出功率呈现阶梯状下降。通过对比辐照过程中温升速率、温度峰值以及高温持续时间对损伤结果的影响,结合能谱仪和扫描电子显微镜的测量结果以及方差分析结果对损伤机理进行了分析和验证。认为高温导致GaAs分解、电极氧化是单结GaAs太阳电池性能退化的主因。  相似文献   

5.
GaAs太阳电池的质子辐照和退火效应   总被引:1,自引:1,他引:0  
对AlGaAs/GaAs太阳电池进行了质子辐照和热退火实验.质子辐照的能量为325keV,辐照的剂量为5×1010-1×1013cm-2.实验结果表明,质子辐照造成了GaAs太阳电池光伏性能的退化,其中短路电流的退化比其它参数的退化更为明显.退火实验结果表明,200℃的低温退火可以使得辐照后的电池的光伏性能得以部分恢复.此外,实验结果还指出,在GaAs太阳电池表面加盖一层0.5mm的硼硅玻璃盖片可以明显地减少质子辐照对GaAs太阳电池性能的损伤.  相似文献   

6.
李国强  高芳亮 《半导体光电》2012,33(5):611-617,623
随着半导体太阳电池制备工艺的发展,基于GaAs的Ⅲ-Ⅴ族化合物半导体电池光电转换效率不断提高,是目前世界上最具竞争力的新一代太阳电池,成为空间太阳电池领域的研究热点。文章详细评述了GaAs基系双结、三结及三结以上太阳电池的研究历程与最新技术发展现状,并对它的发展前景进行了展望。  相似文献   

7.
研究了空间实用背场Si太阳电池和GaAs/Ge太阳电池性能随质子辐照注量1×109~5×1013cm-2的变化.实验表明,两种太阳电池的电性能随辐照注量增加有不同的衰降趋势.背场Si太阳电池性能参数Isc、Voc和Pmax衰降变化快,辐照注量为2×1010cm-2时,Pmax就已衰降为原值的75%;而GaAs/Ge电池对应相同的衰降辐照注量达8×1011cm-2,且其Isc、Voc和Pmax衰降变化起初缓慢,当辐照注量接近3×1012cm-2时才迅速下降.背场Si电池和GaAs/Ge电池性能衰降分别与质子辐照引入的Ev+0.14eV及Ev+0.43eV和Ec-0.41eV深能级有关.  相似文献   

8.
研究了空间实用背场Si太阳电池和GaAs/Ge太阳电池性能随质子辐照注量1×109~5×1013cm-2的变化.实验表明,两种太阳电池的电性能随辐照注量增加有不同的衰降趋势.背场Si太阳电池性能参数Isc、Voc和Pmax衰降变化快,辐照注量为2×1010cm-2时,Pmax就已衰降为原值的75%;而GaAs/Ge电池对应相同的衰降辐照注量达8×1011cm-2,且其Isc、Voc和Pmax衰降变化起初缓慢,当辐照注量接近3×1012cm-2时才迅速下降.背场Si电池和GaAs/Ge电池性能衰降分别与质子辐照引入的Ev+0.14eV及Ev+0.43eV和Ec-0.41eV深能级有关.  相似文献   

9.
对第三代太阳电池的InGaP/GaAs双叠层模型结构进行了理论性改进,提出了将GaInNAs/GaAs量子阱结构生长于子电池GaAs的空间电荷区的模型,并对其子电池的吸收效率与量子效率进行了模拟计算,分析了此模型对提高叠层太阳电池的整体光电转换效率的可行性。  相似文献   

10.
在空气中和真空中,利用波长为1070nm的连续(CW)激光辐照三结砷化镓(GaAs)太阳电池,通过测试激光辐照前后电池的电流-电压曲线,并利用激光诱导电流(LBIC)成像系统和X射线光电子能谱仪(XPS),研究了三结GaAs太阳电池的损伤情况。结果表明,当激光功率密度为8.4 W/cm2、辐照时间为10s时,在空气中,底电池Ge熔融短路;在真空中,顶电池Ga0.5In0.5P和底电池Ge均发生短路,说明三结GaAs太阳电池的底电池最容易受到破坏,且电池在真空中比在空气中更容易受到损伤。该研究结果可为三结GaAs太阳电池的激光无线能量传输和损伤机理的研究提供一定的参考。  相似文献   

11.
GaAs and GaAs/Ge solar cells grown by metalorganic chemical vapor deposition (MOCVD) were characterized at very low temperature (-185°C) and solar intensity (0.25 suns) to simulate the cell behavior in a severe interplanetary environment. A comparison is also made with GaAs cells grown with the liquid-phase-epitaxy (LPE) technique. The analysis carried out from -185 to +50°C shows, in particular, different behaviors for GaAs/Ge cells with active and passive Ge substrates; the GaAs/Ge passive cell behaves as a GaAs on GaAs cell, indicating that from the thermal and optical point of view, Ge acts only as a mechanical support. The GaAs cell with an active Ga substrate is affected by a notch in the I-V curves, which is more evident at low temperatures but reduces at low intensities. The GaAs/GaAs MOCVD cell shows the best performance at low temperature and intensity with a conversion efficiency of 27.2%  相似文献   

12.
The first commercial communications satellite with gallium arsenide on germanium (GaAs/Ge) solar arrays was launched in January 1996. The spacecraft, named Measat, was built by Hughes Space and Communications Company. The solar cell assemblies consisted of large-area GaAs/Ge cells supplied by Spectrolab Inc. with infrared reflecting (IRR) coverglass supplied by Pilkington Space Technology. A comprehensive characterization program was performed on the GaAs/Ge solar cell assemblies used on the Measat array. This program served two functions: first to establish the database needed to accurately predict on-orbit performance under a variety of conditions; and second, to demonstrate the ability of the solar cell assemblies to withstand all mission environments while still providing the required power at end-of-life. Characterization testing included: measurement of electrical performance parameters as a function of radiation exposure, temperature and angle of incident light; reverse bias stability; optical and thermal properties; mechanical strength tests, panel fabrication, humidity and thermal cycling environmental tests. The results provided a complete database enabling the design of the Measat solar array, and demonstrated that the GaAs/Ge cells meet the spacecraft requirements at end-of-life.  相似文献   

13.
Past NASA missions to Mars, Jupiter and the outer planets were powered by radioisotope thermal generators. Although these devices proved to be reliable, their high cost and highly toxic radioactive heat source has made them far less desirable for futur e planetary missions. This has resulted in a renewed search for alternate energy sources, some of them being photovoltaics (PV) and thermophotovoltaics. Both of these alternate energy sources convert light/thermal energy directly into electricity. In order to create a viable PV database for planetary mission planners and cell designers, we have compiled low-intensity low-temperature (LILT) I-V data on single-junction and multi-junction high-efficiency solar cells. The cells tested here represent the latest PV technology. Using these LILT data to calculate short-circuit current, open-circuit voltage and fill factor as a function of temperature and intensity, an accurate prediction of cell performance under the AMO spectrum can be determined. When combined with quantum efficiency at low temperature data, one can further enhance the data by adding spectral variations to the measurements. This paper presents an overview by LILT measurements and is only intended to be used as a guideline for material selection and performance predictions. As single-junction and multi-junction cell technologies emerge, new test data must be collected. Cell materials included are Si, GaAs/Ge, GaInP/GaAs/GaAs, InP, InGaAs/InP, InP/InGaAs/InP and GaInP. Temperatures range down to as low as — 180°C and intensities range from 1 sun down to 0.02 sun. The coefficients presented in this paper represent experimental results and are intended to provide the user with approximate numbers.  相似文献   

14.
Japan's Research and Development (R&D) activities on high‐performance III–V compound space solar cells are presented. Studies of new CuInGaSe2 thin‐film terrestrial solar cells for space applications are also discussed. Performance and radiation characteristics of a newly developed InGaP/GaAs/Ge triple‐junction space solar cell, including radiation response, results of a flight demonstration test of InGaP/GaAs dual‐junction solar cells and CuInGaSe2 thin‐film solar cells, and radiation response of three component sub‐cells are explained. This study confirms superior radiation tolerance of InGaP/GaAs dual‐junction cells and CuInGaSe2 thin‐film cells by space flight experiments. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
An updated review of the state of the art in the development of GaAs solar cells is provided, with emphasis on AlGaAs-GaAs cells suitable for space applications. A set of theoretically derived characteristics is given for this type of solar cell. Comparison of measured performance with theory shows excellent agreement. Data on the effects of radiation damage (high-energy electrons, protons, and neutrons) is also integrated into a form useful for evaluation purposes. Techniques for fabricating (AlGa)As-GaAs solar cells in quantities large enough for practical applications are discussed and are shown to have been demonstrated. The possibility of extending these techniques to the fabrication of very thin low-weight cells for space applications is also considered. Finally, the results obtained to date in the development of GaAs solar cells for applications requiring concentrated sunlight are reviewed, for terrestrial as well as for space applications. As a milestone toward the practical application of AlGaAs-GaAs solar cells in space systems, a brief account is provided on the development status of small experimental AlGaAs-GaAs solar-cell panels for specific space flights.  相似文献   

16.
Evaluating the reliability, warranty period, and power degradation of high concentration solar cells is crucial to introducing this new technology to the market. The reliability of high concentration GaAs solar cells, as measured in temperature accelerated life tests, is described in this paper. GaAs cells were tested under high thermal accelerated conditions that emulated operation under 700 or 1050 suns over a period exceeding 10 000 h. Progressive power degradation was observed, although no catastrophic failures occurred. An Arrhenius activation energy of 1.02 eV was determined from these tests. The solar cell reliability [R(t)] under working conditions of 65°C was evaluated for different failure limits (1–10% power loss). From this reliability function, the mean time to failure and the warranty time were evaluated. Solar cell temperature appeared to be the primary determinant of reliability and warranty period, with concentration being the secondary determinant. A 30‐year warranty for these 1 mm2‐sized GaAs cells (manufactured according to a light emitting diode‐like approach) may be offered for both cell concentrations (700 and 1050 suns) if the solar cell is operated at a working temperature of 65°C. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
关洪宇  王蕾  冯琨程  许艳军  江帆  韩诚山 《红外与激光工程》2023,52(1):20221395-1-20221395-7
Hα太阳空间望远镜具有对日光谱成像及全日面成像功能,具有多功能、高度集成化的特点。它位于卫星载荷舱内,在轨姿态多变,并且具有连续观测的工作模式,焦平面组件及电单机工作热环境苛刻,对热设计提出较高要求。通过星载一体化设计及相机结构合理布局,在卫星舱板靠近相机处预留辐射散热通道,合理设计散热面将工作热耗快速导出,保证各部组件温度满足指标要求。搭建热平衡试验平台,对高低温工况下的热分析和热平衡试验及在轨数据进行对比,同一工况下各电单机最大温差≤4℃,对热设计的正确性进行了验证。保证了Hα太阳空间望远镜在复杂空间环境下的正常工作,对此类空间太阳望远镜热控设计具有一定的借鉴意义。  相似文献   

18.
王荣  刘运宏  孙旭芳  崔新宇 《半导体学报》2007,28(10):1599-1602
运用2×1.7MV串列静电加速器提供的质子束,对MOCVD方法制备的GaInP/GaAs/Ge三结电池进行低能质子辐射效应研究.选质子能量为0.28,0.62和2.80MeV,辐照注量为1×1010,1×1011,1×1012和1×1013cm-2.对电池的辐射效应用I-V特性和光谱响应测试进行分析.研究结果表明:随辐照注量的增加,太阳电池性能参数Lsc,Voc和Pmax的衰降幅度均增大;但随质子辐照能量的增加,Lsc,Voc和Pmax的衰降幅度均减小.实验中0.28MeV质子辐照引起电池Lsc,Voc,Pmax衰降最显著,三结电池中光谱响应衰降最明显的是中间GaAs电池.  相似文献   

19.
III–V solar cells for terrestrial concentration applications are currently becoming of greater and greater interest. From our experience, concentrations higher than 1000 suns are required with these cells to reduce PV electricity cost to such an extent that this alternative could become cost competitive. In this paper, a single‐junction p/n GaAs solar cell, with efficiencies of 23ċ8 and 22ċ5% at concentration ratios of 2700 and 3600 suns respectively, is presented. This GaAs solar cell is well suited for use with non‐imaging optical concentrators, which possess a large aperture angle. Low‐temperature liquid phase epitaxy (LTLPE) has been the growing technique for the semiconductor structure as an attempt to use a simplified, cheap and clean technique, within a renewable energy perspective. The GaAs solar cell presented is compared with the highest efficiency tandem solar cells at concentration levels exceeding 1000 suns. The GaAs solar cell performance maintains high efficiencies up to 4000 suns, while tandem cells seem to drop very quickly after reaching their maximum. Therefore, single‐junction GaAs solar cells are a good candidate for operating at very high concentrations, and LPE is able to supply these high‐quality solar cells to work within terrestrial concentration systems, the main objective of which is the reduction of PV electricity costs. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号