首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
人耳和侧面人脸融合的多模态身份识别   总被引:1,自引:0,他引:1  
首先分别对人耳和侧面人脸建立基于全空间线性判别分析(FSLDA)的分类器;然后采用贝叶斯决策理论中常见的积、和、中值多分类器融合算法,并对投票算法进行了改进.实验结果表明,与单一的人耳或侧面人脸特征识别比较,人耳和侧面人脸融合的多模态识别率得到提高,并扩大了识别范围.  相似文献   

2.
工业产品的生产经常需要在不同模态间切换,多模态过程数据具有多中心和方差差异大等特点.针对多模态过程数据的特征,通过构造标准距离,提出了基于标准距离k近邻的故障检测策略(SD–kNN).首先在标准距离度量下计算样本与其前k近邻的距离;其次将近邻距离的平方和的均值作为样本的统计量D~2;最后,根据D~2的分布确定检测方法的控制限,当新样本的D~2大于控制限时,判定其为故障,否则为正常.标准距离使不同模态中样本间的近邻距离能够在同一尺度下度量,使得SD–kNN的D~2能够准确反映样本间的相似程度.进行了数值模拟过程和青霉素发酵过程故障检测实验. SD–kNN方法检测出了数值模拟过程的全部故障和青霉素过程95%以上的故障,相对于PCA, kPCA, FD–kNN等方法具有更高的故障检测率. SD–kNN继承了FD–kNN对一般多模态过程的故障检测能力,还能够对方差差异显著的多模态过程进行故障检测.  相似文献   

3.
针对连续化工过程的多模态划分问题,提出了基于独立元分析-主元分析两步特征提取的k-独立元分析-主元分析(k-ICA-PCA)分类方法.传统的k-主元分析(k-PCA)分类方法假设过程数据仅仅包含高斯信息,然而在实际过程中数据往往无法满足这一假设.所提出的k-ICA-PCA方法在分类迭代过程中,不仅考虑了过程数据的高斯信息,而且考虑了数据的非高斯信息.将k-ICA-PCA分类方法应用到TE过程进行仿真实验,仿真结果验证了k-ICA-PCA方法相对于k-PCA分类方法更加有效和可行.  相似文献   

4.
多模态人脸识别技术是解决目前二维人脸识别领域瓶颈问题的一项重要手段.在二维人脸特征定位中结合Gabor变换和人脸弹性图方法,采用缩小搜索范围的方法提高系统效率;三维人脸特征定位首先采用PS方法进行粗略定位,然后仿照二维人脸识别方法定义Gabor变换系数向量进行精确定位,其中也采用一个模板来缩小搜索范围.试验证明,方法不仅效率高,而且能适应多种姿态和表情的变换.  相似文献   

5.
本文介绍了多模态控制在自动供油系统中的应用,及CACS-9000系统中多模态控制策略。运行结果表明,控制系统响应速度快,稳态精度高。  相似文献   

6.
基于小波分解和鉴别共同矢量的人耳识别   总被引:1,自引:1,他引:1       下载免费PDF全文
针对高维、小样本的情况下使用Fisher线形鉴别分析进行特征提取存在的病态奇异问题,提出一种新的特征提取方法,即先对人耳样本图像进行二维离散小波分解,再利用DCV算法对小波分解后的低频信息分量作进一步的降维处理。不仅克服了小样本问题,也解决了直接使用DCV算法对人耳图像降维所引起的计算量大和计算速度过慢的问题。实验证明,该方法具有较好的识别率,是一种有效的特征提取算法。  相似文献   

7.
典型相关分析在人脸姿态估计中的应用   总被引:1,自引:0,他引:1  
在单一物体角度估计中,典型相关分析(CCA)可以用来建立图像空间和角度空间的联系.基于人脸总体形状的相似性,提出了基于外观的人脸姿态估计方法.使用CCA建立姿态变化时人脸这一类物体的外观空间和姿态空间的关系.典型相关向量最大化人脸外观空间和姿态空间的相关性,张成了它们的相关子空间.在相关子空间中,通过线性回归的方法,估计未知姿态图像的角度.为了更好的处理外观空间的非线性问题,引入了该方法.在CUbiC FacePix数据库上的实验验证了这两种算法的有效性.  相似文献   

8.
核不相关鉴别分析是在线性不相关鉴别分析的基础上发展起来的.然而,由于核函数的运用,计算核不相关矢量集变得更加复杂.为了解决这个问题,提出一种解决核不相关鉴别分析的有效算法.该算法巧妙地利用了矩阵的分解,然后在一个矩阵对上进行广义奇异值分解.与此同时,提出了几个相关的定理.最重要的是,提出的算法能克服核不相关鉴别分析中矩阵的奇异问题.在某种意义上,提出的算法拓宽了已有的算法,即从线性问题到非线性问题.最后,用手写数字字符识别实验来验证提出的算法是可行和有效的.  相似文献   

9.
为了提高故障检测和分类能力,提出基于概率密度PCA的多模态过程故障检测算法。对各模态的训练数据建立PCA模型,计算各个模型的控制限和匹配系数。根据匹配系数计算各模态统一的控制限。对新来的数据,运用概率密度确定其模态。新来数据向对应模态的模型上投影并计算统一的统计量,比较统计量与控制限进行多模态过程故障检测。把该方法应用到数值例子和半导体过程中,仿真结果表明,该算法在分类及多模态过程故障检测方面具有很高的准确性。  相似文献   

10.
路径规划作为机器人基本动作实现的基础,其优劣将直接影响动作的实时性和准确性。经典PID控制虽然能准确跟踪目标,但缺乏轨迹优化能力,提出应用多模态控制方法,通过不同的感知驱动相应运动控制,以静态目标导航和动态目标导航为例详细介绍了多模态控制设计方法,并以上海交大的中型机器人Frontier-I为例,通过实验与PID进行比较,验证了方法的有效性。  相似文献   

11.
针对核主成分分析(KPCA)人脸识别算法中对全局特征变化敏感和忽略局部特征的问题,研究了一种基于KL距离的KPCA人脸识别算法。利用KL距离定义了类间距离和类内差异,设定了一个非线性优化函数来最大化类间距离,同时最小化类内差异,使提取的特征更为紧凑可分,并将其应用于KPCA算法中,利用ORL人脸图像库对算法的性能进行了测试。实验结果表明,该算法相对于传统KPCA算法具有更好的识别效果和稳定性。  相似文献   

12.
基于核函数的PCA在QAR数据分析中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
分析了传统的主成分分析方法的不足,论述了KPCA方法及其时间复杂度高的缺陷。在此基础上,提出基于核函数构造的协方差矩阵的主成分分析,相比 KPCA,该方法具有快的降维速度。实验结果显示:把该方法用于QAR数据具有良好的降维效果和高分类正确率。  相似文献   

13.
基于余弦角距离的主成分分析与核主成分分析   总被引:3,自引:0,他引:3       下载免费PDF全文
PCA和KPCA都是基于欧氏距离提出的,这种距离对离群数据点比较敏感,而余弦角距离对离群数据更为鲁棒,在很多情况下具有更好的性能。充分利用余弦角距离的优势,提出两种新的特征抽取算法——基于余弦角距离的主成分分析(PCAC)和基于余弦角距离的核主成分分析(KPCAC)。在YALE人脸数据库与PolyU掌纹数据库上的实验表明,PCAC比PCA取得了更好的效果,KPCAC也表现出了很好的性能。  相似文献   

14.
针对光照、表情、姿态、遮挡等变化显著影响人脸识别系统性能的问题,提出了基于限制对比度自适应直方图均衡化(CLAHE)的低频离散余弦变换(DCT)系数重变换算法。将图像划分成多个互不重叠的局部小块,使用CLAHE对每个局部小块进行局部对比拉伸以实现去噪,通过缩减适当数目的低频DCT系数来消除人脸图像中的光照变化;利用核主成分分析进行特征提取,采用K-最近邻分类器以完成最终的人脸识别。在ORL、扩展YaleB和AR人脸数据库上的实验验证了所提算法的有效性和鲁棒性,实验结果表明,相比其他几种较为先进的人脸识别技术,所提算法取得了更高的识别率,同时大大降低了识别所用时间。  相似文献   

15.
通过对传统的基于向量的典型相关分析(CCA)方法进行改进,提出了一种新的直接基于特征矩阵的二维典型相关分析方法(2DCCA),并将其应用于人脸识别的特征融合过程中。较基于向量的典型相关分析,该方法的优点主要有两点:第一,该方法计算过程中构造的协方差矩阵维数大幅度减小,这在一定程度上避免了人脸识别中存在的“高维小样本问题”;第二,由于协方差矩阵维数的缩减,使特征抽取的速度明显提高。最后在ORL标准人脸库和AR大型人脸数据库上的实验结果有效地验证了这两点。  相似文献   

16.
基于核熵成分分析的数据降维?   总被引:1,自引:0,他引:1       下载免费PDF全文
黄丽瑾  施俊  钟瑾 《计算机工程》2012,38(2):175-177
针对高维数据的维灾问题,采用核熵成分分析方法降维数据,并与主成分分析及核主成分分析方法进行对比。降维后的数据利用支持向量机算法进行分类,以验证算法有效性。实验结果表明,KECA在较低的维数时仍然能获得较好的分类精度,可以减少后续的处理复杂度和运行时间,适用于机器学习、模式识别等领域。  相似文献   

17.
利用巴氏距离(Bhattacharyya Distance)和PCA(Principal Component Analysis)相结合进行人脸识别研究,提出了使用巴氏距离和PCA相合的算法对特征进行提取。当特征向量维数高时,首先对样本K-L(Karhunen-Loeve)变换进行降维,然后采用巴氏距离特征的迭代算法,得到最小错误率上界。基于ORL人脸数据库的实验表明该方法的识别性能优于LDA、HPCA、HLDA,采用文中的算法可以有效地提高识别率,减少巴氏距离特征计算时间,具有较强的实用性。  相似文献   

18.
首先提出BP神经网络在人脸验证上的应用方法,并在Cs_PCA方法的基础之上,提出一种“Cs_PCA+塔式神经网络”的人脸验证新模型(Cs_塔式)。传统的神经网络受到输入样本维数大小的限制,必须经过各种降维处理才能加以训练,受各种降维方法的限制,在降维过程中会丢失相应的数据信息,因此验证效果受到影响。针对此种情况提出了Cs_塔式方法,利用同样的方法,普通BP网在Cs_PCA基础上,利用PCA方法降维构成Cs_BP模型,并且遵照LAUSANNE协议在ORL人脸库上与Cs_塔式模型进行了比较。结果表明,塔式网络有着更好的验证效果。  相似文献   

19.
分析了数据流降维算法PCA和KPCA的原理和实现方法。针对在大型数据集上PCA线性降维无法有效实现降维且KPCA的降维效率差,提出了一种新的降维策略GKPCA算法。该算法将数据集先分组,对每一组执行KPCA,然后过滤重新组合数据集,再次应用KPCA算法,达到简化样本空间,降低了时间复杂度和空间复杂度。实验分析表明,GKPCA算法不仅能取得良好的降维效果,而且时间消耗少。  相似文献   

20.
现有的人脸识别算法多在标准库上进行,缺少对复杂背景下人脸识别问题的研究。提出一种快速的人脸定位识别方法,旨在解决复杂背景中人脸的定位和识别问题。在定位方面,提出一种新的自适应肤色分割的人脸定位算法,充分考虑类肤色背景对定位算法的影响,使该算法在户外环境下的人脸定位精度较传统方法有了一定的提高;识别方面,采用局部SVD方法提取人脸图像特征值,以PCA算法加以识别,新算法改进了传统PCA训练速度慢、内存占用大的缺陷。通过对ORL人脸库以及自制人脸库的实验分析,结果表明该方法不仅能解决复杂背景中人脸定位识别问题,并且高效、快速、有较好的实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号