共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
针对传统去噪方法在强背景噪声情况下,提取声音信号的能力变弱甚至失效与对不同噪声环境适应性差,提出了一种动态FRFT滤波声音信号语音增强方法。给出了不同语音噪声环境下FRFT最优聚散度的更新机制与具体实施方案。用TIMIT标准语音库与Noisex-92噪声库搭配,实验仿真表明,该算法能有效地去噪滤波,显著地提高语音识别系统性能,且在不同的噪声环境和信噪比条件下具有鲁棒性。算法计算代价小,简单易实现。 相似文献
4.
提出了一个基于快速傅里叶变换(FFT)和分数阶傅里叶变换(FRFT)的线性频率调制(LFM)干扰参数的估计和抑制方法.通过FFT粗略估计和FRFT精确估计,确定LFM干扰在分数阶傅里叶域所处的旋转角度,估计出LFM的相关参数,利用最小二乘法综合出LFM干扰信号;然后从接收的信号中减去,有效地抑制LFM干扰.性能仿真分析表明,该方法较好地改善了误码率性能,降低了计算的复杂度,提高了系统处理的实时性. 相似文献
5.
基于分数阶Fourier变换的数字图像加密算法研究* 总被引:1,自引:0,他引:1
基于分数阶Fourier变换和混沌,提出了一种数字图像加密方法。具体算法为:先对图像进行混沌置乱,再进行X方向的离散分数阶Fourier变换;然后在分数阶Fourier域内作混沌置乱,再进行Y方向的离散分数阶Fourier变换;最后将加密图像的实部与虚部映射到RGB,形成可传输的彩色加密图像。实验结果表明,该加密算法具有很好的安全性,在信息安全领域有较好的应用前景和研究价值。 相似文献
6.
针对多分量线性调频信号的魏格纳-维尔分布(Wigner-Ville Distribution,WVD)交叉项干扰问题,提出一种抑制交叉项的方法。该方法利用分数阶傅里叶变换(Fractional Fourier Transform,FRFT)在最佳FRFT域中对给定的线性调频信号具有最好的能量聚集性,将多分量线性调频信号在FRFT域上分解为若干个单分量信号,线性叠加单分量信号的WVD,从而达到抑制交叉项的效果。此外,当多分量线性调频信号为周期信号时周期间存在干扰,进一步提出了在基于FRFT的WVD交叉项抑制方法中增加周期遮蔽处理。仿真结果表明,在保持较高的时频分辨率时,该方法能够有效抑制交叉项,并且有一定的抗噪声能力。 相似文献
7.
8.
基于分数阶傅里叶变换的LMS自适应滤波 总被引:1,自引:0,他引:1
分数阶傅里叶变换是一种线性变换,在多分量情况下不像Wigner-Ville分布那样受到交叉项的影响。但是当信号的信噪比比较小时,检测的效果就比较差,文中提出了一种基于分数阶傅里叶变换的LMS自适应滤波算法。实验结果表明,这种方法在低信噪比的情况下能够有效地检测出信号。另外,如果在自适应过程中采用变步长,可以加快收敛速度,可以显著地减少运算量。 相似文献
9.
在分析分数阶傅里叶变换(FRFT)的基础上,利用FRFT的时频特性、奇异特征值的稳定性及幂函数的缩放特性,提出了一种基于SVD和FRFT的音频信息隐藏算法。实验结果表明,该算法具有很好的不可感知性,且对加噪、重采样、重量化、MP3压缩及频域恶意攻击具有很强的鲁棒性。 相似文献
10.
为了提高数字水印的鲁棒性和安全性,利用人眼对彩色图像视敏度特性的分析,提出了一种基于FRFT及HVS的自适应彩色数字水印算法。利用谱度量构造纹理掩蔽因子,并将它与图像的亮度及边缘掩蔽因子结合,构造彩色图像自适应掩蔽因子,将其作为嵌入强度,通过改变载体图像的FRFT中频系数进行水印嵌入。实验结果表明,该算法具有自适应能力强、隐蔽性好、安全性高等特点。 相似文献
11.
Oversampling is widely used in practical applications of digital signal processing. As the fractional Fourier transform has
been developed and applied in signal processing fields, it is necessary to consider the oversampling theorem in the fractional
Fourier domain. In this paper, the oversampling theorem in the fractional Fourier domain is analyzed. The fractional Fourier
spectral relation between the original oversampled sequence and its subsequences is derived first, and then the expression
for exact reconstruction of the missing samples in terms of the subsequences is obtained. Moreover, by taking a chirp signal
as an example, it is shown that, reconstruction of the missing samples in the oversampled signal is suitable in the fractional
Fourier domain for the signal whose time-frequency distribution has the minimum support in the fractional Fourier domain.
Supported partially by the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 60625104),
the National Natural Science Foundation of China (Grant Nos. 60890072, 60572094), and the National Basic Research Program
of China (Grant No. 2009CB724003) 相似文献
12.
分数傅里叶域图像数字水印方案 总被引:3,自引:0,他引:3
根据离散分数傅里叶变换(DFRFT),提出了一种基于分数傅里叶变换的图像数字水印方案。分数傅里叶变换具有空域和频城双城表达能力,可以对原始图像和水印信号分别进行不同阶次的分数傅里叶变换以增强水印安全性。将水印信号的分数傅里叶谱叠加在原始图像在视觉上的次重要分量上。在JPEG压缩、图像旋转、高斯低通滤波的攻击方式下,对水印图像进行了鲁棒性分析,实验表明该算法具有良好的鲁棒性。 相似文献
13.
一种新的分数阶Fourier域的Chirp类水印方案 总被引:1,自引:0,他引:1
提出了一种新的分数阶Fourier域Chirp类数字水印方案,该方案利用分数阶Fourier变换基函数的正交性和旋转相加性,在不同的分数阶Fourier域嵌入Chirp水印,并利用分数阶Fourier域Chirp信号的聚集性进行盲检测。接着结合该水印嵌入方案,利用分数阶Fourier变换的旋转相加性和酉性,推导出分数阶Fourier域水印容量的计算公式。仿真实验表明该算法由于可以选择嵌入在不同分数阶Fourier域,使得嵌入方法灵活安全,同时算法的不可见性好,对高斯白噪声干扰、裁剪及其它常见图像处理过程具有一定的鲁棒性。 相似文献
14.
15.
The multiple-parameter fractional Fourier transform 总被引:1,自引:0,他引:1
The fractional Fourier transform (FRFT) has multiplicity, which is intrinsic in fractional operator. A new source for the multiplicity of the weight-type fractional Fourier transform (WFRFT) is proposed, which can generalize the weight coefficients of WFRFT to contain two vector parameters m,n ∈ Z^M . Therefore a generalized fractional Fourier transform can be defined, which is denoted by the multiple-parameter fractional Fourier transform (MPFRFT). It enlarges the multiplicity of the FRFT, which not only includes the conventional FRFT and general multi-fractional Fourier transform as special cases, but also introduces new fractional Fourier transforms. It provides a unified framework for the FRFT, and the method is also available for fractionalizing other linear operators. In addition, numerical simulations of the MPFRFT on the Hermite-Gaussian and rectangular functions have been performed as a simple application of MPFRFT to signal processing. 相似文献
16.
As the fractional Fourier transform has attracted a considerable amount of attention in the area of optics and signal processing, the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier transform. Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain, the discretization of the fractional Fourier transform has been investigated recently. A summary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper. The discretizations include sampling in the fractional Fourier domain, discrete-time fractional Fourier transform, fractional Fourier series, discrete fractional Fourier transform (including 3 main types: linear combination-type; sampling-type; and eigen decomposition-type), and other discrete fractional signal transform. It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform. 相似文献
17.
乔闹生 《计算机工程与应用》2009,45(29):144-145
首先分析了含有高斯白噪声和脉冲噪声的图像必须采用不同去噪方法的原因;然后分别给出了小波变换后的低频子带图像与高频子带图像的去噪方法:用改进的邻域平均法对低频子带图像进行去噪处理。对高频子带图像采用中值滤波、阀值处理、小波系数增强方法去除脉冲噪声;最后对经过处理后的各子带图像进行小波逆变换得到恢复图像;实验结果证明了理论分析的正确性。 相似文献
18.
The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy Δt = T/N = 1/N(1/2) when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation. 相似文献
19.
When the initial frequencies and chirp rates of multi-component linear frequency modulation (LFM or chirp) signals are close,the signals may not be distinguished in the fractional Fourier domain (FRFD).Consequently,some signals cannot be detected.In this paper,first,the spectral distribution characteristics of a continuous LFM signal in the FRFD are analyzed,and then the spectral distribution characteristics of a LFM signal in the discrete FRFD are analyzed.Second,the critical resolution distance between the peaks of two LFM signals in the FRFD is deduced,and the relationship between the dimensional normalization parameter and the distance between two LFM signals in the FRFD is also deduced.It is discovered that selecting a proper dimensional normalization parameter can increase the distance.Finally,a method to select the parameter is proposed,which can improve the resolution ability of the fractional Fourier transform (FRFT).Its effectiveness is verified by simulation results. 相似文献