首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
采用热模拟实验对含Sc超高强Al-Zn-Cu-Mg-Zr合金在应变速率为0.001~10s-1、变形温度为380~470℃的条件下进行了热压缩实验.研究了实验合金的流变应力行为和微观组织演变.结果表明:流变应力随变形温度升高而下降;随应变速率增加峰值应力也相应增加.随变形温度升高和应变速率降低,合金动态再结晶的程度加深,亚晶尺寸变大.含Sc超高强Al-Zn-Cu-Mg-Zr合金,形成了Al3Sc弥散相,该相可强烈抑制再结晶.合金主要软化机制为动态回复伴随动态再结晶.  相似文献   

2.
薛克敏  薄冬青  李萍 《材料导报》2018,32(8):1306-1310
对轧制态7A60铝合金在应变速率为0.1~0.01s-1、变形温度为250~350℃条件下热压缩的显微组织特征和流变应力进行实验研究。结果表明:随着应变速率的降低和温度的升高,材料的各向异性减弱,均匀性增强,晶粒发生明显粗化;在热变形的过程中该合金的主要软化机制为动态回复和动态再结晶,峰值应力随应变速率的增加而增大,随温度的升高而降低,在应变速率为0.01s-1时发生了明显的非连续动态再结晶行为。合金热变形的流变应力行为可用双曲正弦函数来表示,其热激活能为438.981kJ/mol。  相似文献   

3.
采用Gleeble-1500热模拟试验机对含钪Al-Zn-Mg合金进行热压缩实验,研究了合金在不同热压缩条件下的热变形行为和显微组织。结果表明:合金的流变应力随应变速率的增大而增大,随变形温度的升高而减小。该合金热压缩变形的流变应力行为可用Zener-Hollomon参数来描述,其热变形激活能为150.25kJ/mol。在变形温度为380℃,应变速率为1s-1条件下,合金组织中存在大量的位错墙,表明发生了动态回复现象。随着变形温度的升高,当温度为500℃时,合金中出现了再结晶晶粒,说明主要软化机制逐步由动态回复转变为动态再结晶。  相似文献   

4.
新型含铝奥氏体耐热合金(AFA)进行压缩热模拟试验,使用OM和EBSD等手段研究了这种合金在950~1150℃和0.01~5 s-1条件下的微观组织演变、建立了基于动态材料模型热加工图、分析了变形参数对合金加工性能的影响并按照不同区域组织变形的特征构建了合金的热变形机理图。结果表明:新型AFA合金的高温流变应力受到变形温度和应变速率的显著影响。在变形温度为950~1150℃和应变速率为0.18~10 s-1条件下,这种合金易发生流变失稳。在变形温度为1050~1120℃、应变速率0.01~0.1 s-1和变形温度1120~1150℃、应变速率10-0.5~10-1.5 s-1这两个区间,这种合金发生完全动态再结晶行为且其再结晶晶粒均匀细小,功率耗散因子η达到峰值45%。新型AFA合金的热加工艺,应该优先选择再结晶区域。  相似文献   

5.
目的 研究Nb47Ti合金在变形温度为600~750℃、应变速率为0.001~1s?1条件下的热变形行为和微观组织。方法 采用Gleeble-3500型热/力模拟试验机进行等温恒应变速率压缩实验,获得Nb47Ti合金热变形的真应力应变曲线,并利用EBSD技术手段分析热变形后的微观组织。结果 Nb47Ti合金在变形温度小于650℃、应变速率小于0.1s?1下热变形的真应力-应变曲线为动态再结晶型曲线,变形温度大于等于700℃时呈现为动态回复型曲线;峰值应力随变形温度的升高和应变速率的减小而减小;在变形温度为650℃、应变速率为0.001 s?1下热变形组织以再结晶晶粒和亚晶粒为主,随着应变速率的增大,动态再结晶晶粒不断减少,而亚晶粒和变形晶粒增多,晶粒得到显著细化。当应变速率为0.1 s?1时,随着变形温度的增加,晶粒尺寸增大,变形温度升高至750℃,热变形组织中亚晶粒所占比例高达50.5%。结论 Nb47Ti合金是温度和正应变速率敏感材料,随变形温度的升高和应变速率的增大,变形过程中动态回复软化机制更为显著,低温、高应变速率下变形获得的再结晶晶粒尺寸小。  相似文献   

6.
为了研究ZK60镁合金的热变形行为,采用Gleebe-1500热模拟机在变形温度为423~673K、应变速率为0.001~10s-1条件下对合金进行的热压缩试验.分析合金流变应力与应变速率、变形温度之间的关系,通过引入Z参数建立合金流变应力本构方程,并观察合金变形过程中的显微组织演变.结果表明:变形温度低于473K且应变速率大于0.1s-1时试样发生宏观开裂;在变形温度较高和应变速率较低时,合金真应力-真应变曲线具有动态再结晶特征.随变形温度升高和应变速率的降低流变应力减小,热压缩后的组织中再结晶现象越明显;应变速率越高,再结晶晶粒越细小.  相似文献   

7.
陈微  官英平  王振华 《材料导报》2016,30(22):164-168
在变形温度为350~510℃、应变速率为0.001~10s-1条件下,在Gleeble-3500热模拟实验机上对AlMg-Si-Ti合金进行等温热压缩实验,以实验所得数据为基础,结合变形微观组织,确定了Al-Mg-Si-Ti合金热变形时发生动态再结晶的条件,建立了Al-Mg-Si-Ti合金动态再结晶峰值应变模型。采用加工硬化率的方法,利用lnθ-ε曲线的拐点特征和-(lnθ)/ε-ε曲线的极小值判据对再结晶峰值应变与临界应变关系进行了研究。结果表明:AlMg-Si-Ti合金热变形时在变形温度430~510℃、应变速率0.001~0.1s-1发生动态再结晶。Al-Mg-Si-Ti合金发生动态再结晶时的临界应变随应变速率的增大而增加,随变形温度的升高而降低。临界应变与峰值应变满足关系:εc=0.88εp。  相似文献   

8.
Al-35Si高硅铝合金热变形行为的研究   总被引:1,自引:1,他引:1  
张伟  杨伏良  甘卫平  欧定斌 《材料导报》2005,19(10):136-138
采用Gleeble-1500热模拟机对电子封装用Al-35Si高硅铝合金进行了恒温和恒应变速率下的热压缩变形实验,温度范围为370~550℃,应变速率为0.05~0.45s-1,得到了其真应力-真应变曲线.结果表明:在实验范围内,此合金的流变应力随变形温度的升高、应变速率的降低而降低,在不同变形条件下真应力软化机制分别受动态回复和动态再结晶控制,并且应变速率敏感性指数m随温度的升高呈上升趋势.  相似文献   

9.
通过在Gleeble-1500D热模拟试验机上进行高温等温压缩试验,对Cu-0.4Cr-0.15Zr-0.04Y合金在应变速率为0.001~10s-1、变形温度为650~850℃、最大变形程度为50%条件下的流变应力行为进行了研究。分析了该合金在高温变形时的流变应力和应变速率及变形温度之间的关系,并研究了在热压缩过程中组织的变化。结果表明,热模拟试验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而下降,随应变速率提高而增大。从应变速率、流变应力和温度的相关性,得出了该合金高温热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)和流变应力方程,变形温度对合金动态再结晶行为有强烈影响。  相似文献   

10.
在Gleeble-1500D热模拟试验机上,对Cu-2.0Ni-0.5Si-0.03P合金进行高温压缩实验,应变速率为0.01~5s-1、变形温度为600~800℃,对其高温等温压缩流变应力行为进行了研究.研究结果表明:随变形温度升高,合金的流变应力下降,随应变速率提高,流变应力增大.在应变温度为750、800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征.可采用Zener-Hollomon参数的双曲正弦函数来描述Cu-2.0Ni-0.5Si-0.03P合金高温变形时的流变应力行为.从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数n,应力参数α,结构因子A,热变形激活能Q和流变应力方程.合金动态再结晶的显微组织强烈受到变形温度的影响.  相似文献   

11.
使用圆柱形TB6钛合金试样在Thermecmaster-Z型热模拟试验机上进行热模拟压缩实验(变形温度为825~1100℃,应变速率为0.001~1 s-1)。对采集的流变数据进行加工硬化率处理,确定动态再结晶体积分数,研究了TB6钛合金β区变形的动态再结晶动力学。结果表明,流变应力随着变形温度的降低或应变速率的提高而增大,流变曲线呈现出动态再结晶类型的特征。随着应变速率的降低和变形温度的提高,动态再结晶的体积分数和晶粒尺寸增大。在变形温度高于950℃、应变速率低于0.001 s-1条件下,动态再结晶的晶粒严重粗化。动态再结晶动力学曲线经历缓慢增加—快速增加—缓慢增加三个阶段,呈现出典型的“S”型特征。确定了动态再结晶的体积分数达到50%时的应变,建立了TB6钛合金的动态再结晶动力学模型。  相似文献   

12.
3003铝合金动态再结晶实验研究   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟试验机对3003铝合金进行变形温度为300~500℃、应变速率为0.01~10.0s-1的高温等温压缩实验,由真应力-真应变曲线计算应变硬化速率,并采用截线法测量热压缩后平均晶粒尺寸,结果表明:3003铝合金动态再结晶临界应变εc随着Z参数的增大而提高,合金发生动态再结晶的临界条件为:...  相似文献   

13.
Hot compression tests in the temperature range of 900–1150 °C and strain rates varying between 0.001 and 0.5 s−1 were performed on Hastelloy X superalloy in order to investigate the kinetics of hot deformation. An Arrhenius-type equation was used to characterize the dependence of the flow stress on deformation temperature and strain rate. The results showed that dynamic recrystallization (DRX) as well as metadynamic recrystallization (MDRX) occurred during hot working. A novel technique has been developed for calculating the DRX kinetics parameters on the basis of the Johnson-Mehl-Avrami-Kolmogorov (JMAK) and isothermal transformation rate equations. The variation of grain size in the DRX and MDRX regimes correlated with the standard Zener–Hollomon parameter.  相似文献   

14.
在Glreeble 1500热模拟机上进行大变形等温压缩实验,研究了23Co13Ni11Cr3Mo钢的高温变形行为.结果表明:流变应力随着变形温度的降低和应变速率的升高而增大,在高温、低应变速率下动态再结晶软化效应显著,在温度为1000℃、应变速率为0.001 s-1时流变应力下降29.6%.23Co13Ni11Cr3...  相似文献   

15.
权国政  赵磊  张艳伟  周杰  李蓬川 《功能材料》2012,(2):222-226,230
热压缩实验获得Ti-6Al-2Zr-1Mo-1V合金在温度1073~1323K,应变速率0.01~10s-1条件下的真应力-应变曲线,以此作为识别及表征动态再结晶临界条件的底层数据。对比分析流变应力曲线发现高温、低应变速率下动态回复型软化态势显著;低温、高应变速率下动态再结晶型软化态势显著。引入材料加工硬化率θ,结合θ-σ曲线拐点判据识别了流变应力曲线隐含表征激活动态再结晶的特征参量:临界应变、临界应力。采用含动态再结晶激活能Q的Arrhenius方程求得α、β、n1、n2等材料常数并获得该合金动态再结晶激活能对应变速率及温度的响应图。进一步引入表征动态再结晶临界条件的临界应变模型,获得了临界应变与各热力参数之间的数学关系,验证表明该临界模型预测精度最大为12.9%。  相似文献   

16.
The deformation behavior of AZ61 Mg alloy during hot deformation has been investigated in wide temperature and strain rate range by a Gleeble simulator. Specimens are deformed in compression in the temperature range of 523~673 K and at strain rates of 0.001~1 s-1. It is found that the flow curves exhibit a peak and then decrease towards steady-state of classical DRX, which decrease with rising temperature and decreasing strain rate. The deformation behavior of the specimens can be attributed to the occurrence of strain hardening and softening. As stress decreases, the strain hardening rate declines at a fast rate when temperature rises or strain rate decreases. The shapes of θ-σ curves indicate some important features such as subgrain formation, the critical stress, the peak stress and steady stress. The onset of DRX can be determined by the point of inflection on θ-σ or Inθ-σ curves.  相似文献   

17.
肖凯 《材料工程》2012,(2):9-12
利用Gleeble-1500在温度200~500℃和应变速率0.001~1s-1范围内对铸态AZ31镁合金进行热压缩实验,并对动态再结晶行为进行研究。基于温度-应变速率的变化规律(Zener-Hollomon参数,Z参数),分析了形变温度和应变速率对铸态AZ31镁合金组织结构的影响规律。结果表明:动态再结晶发生后,再结晶晶粒尺寸随着形变温度的降低而减小。随着Z值的增加,动态再结晶作用增强,形变组织细化。为了便于工程应用的参考,给出了相应的热加工三维图。  相似文献   

18.
The hot deformation characteristics and constitutive analysis of Inconel (IN) 600 superalloy were investigated at elevated temperatures. Hot compressive tests were carried out in the temperature and strain rate ranging from 900 to 1150 °C and 1 × 10−3–10 s−1, respectively. The flow behavior analyses and microstructural observations indicate that the softening mechanisms were related to dynamic recrystallization (DRX) and grain growth. DRX played a dominant role in the microstructural evolution at low temperatures (or high strain rates). DRX was the dominant softening effect at low strains on testing at high temperatures with low strain rates, whereas growth of the dynamically recrystallized grains was responsible for softening at high strains. The flow stress of IN 600 was fitted well by the constitutive equation of the hyperbolic sine function under the deformation conditions performed in this study. A constitutive equation as a function of strain was established through a simple extension of the hyperbolic sine constitutive relation.  相似文献   

19.
《材料科学技术学报》2019,35(9):1851-1859
The microstructure evolutions and nucleation mechanisms of GH4169 G alloy were studied by optical microscope, electron backscatter diffraction (EBSD) and transmission electron microscope (TEM). The hot compression tests were performed different imposed reductions in the range of true strain from 0.12 to 1.2 at the temperatures of 930 ℃-1050 ℃ with strain rates of 0.01 s−1-1 s−1. It is found that cumulative and local misorientation increase firstly and then decrease when the strain is increased due to the progress of dynamic recrystallization (DRX). The low angle boundaries (LAGBs) rapidly develop to high angle boundaries (HAGBs) at relatively high deformation temperature or the low strain rate. There are three DRX mechanisms observed for GH4169 G alloy during hot deformation. Discontinuous dynamic recrystallization (DDRX) as the dominant mechanism for GH4169 G alloy is characterized by typical necklace structures and bulged-original boundaries. Besides, different deformation bands with dislocation cells formed in deformed matrix at low temperature and large strain, which indicates that continuous dynamic recrystallization (CDRX) contributed to the DRX process. The twin boundaries lost their coherent characteristics and provide sites for nucleation, which also accelerates the nucleation of DRX.  相似文献   

20.
In this research, the dynamic recrystallization (DRX) behavior of an as-cast precipitation hardenable (PH) stainless steel was investigated by conducting hot compression tests at temperatures between 950-1150℃ and under strain rates of 0.001-1 s^-1. The flow stress curves show that the DRX is responsible for flow softening during hot compression. The effects of temperature and strain rate on the strain and stress corresponding to peak point (εp and σp) of flow curve were analyzed individually. It is realized that, they increase with strain rate and decrease with temperature. The relationship between Zener-Hollomon parameter (Z) and εp was investigated and the equation of εp=4.3×10^-4^0.14 was proposed. The strain for the maximum rate of DRX (εmax) was determined under different deformation conditions. Therefore, it is realized that it increases with Z parameter and vise versa. On the basis of obtained results, the equation of εmax=9.5 × 10^-4Z0.12 was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号