首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, a wide range of generalized barycentric coordinates has been suggested. However, all of them lack control over derivatives. We show how the notion of barycentric coordinates can be extended to specify derivatives at control points. This is also known as Hermite interpolation. We introduce a method to modify existing barycentric coordinates to higher order barycentric coordinates and demonstrate, using higher order mean value coordinates, that our method, although conceptually simple and easy to implement, can be used to give easy and intuitive control at interactive frame rates over local space deformations such as rotations.  相似文献   

2.
In this paper, we propose a complete model handling the physical simulation of deformable 1D objects. We formulate continuous expressions for stretching, bending and twisting energies. These expressions are mechanically rigorous and geometrically exact. Both elastic and plastic deformations are handled to simulate a wide range of materials. We validate the proposed model in several classical test configurations. The use of geometrical exact energies with dynamic splines provides very accurate results as well as interactive simulation times, which shows the suitability of the proposed model for constrained CAD applications. We illustrate the application potential of the proposed model by describing a virtual system for cable positioning, which can be used to test compatibility between planned fixing clip positions, and mechanical cable properties.  相似文献   

3.
Shape interpolation has many applications in computer graphics such as morphing for computer animation. In this paper, we propose a novel data‐driven mesh interpolation method. We adapt patch‐based linear rotational invariant coordinates to effectively represent deformations of models in a shape collection, and utilize this information to guide the synthesis of interpolated shapes. Unlike previous data‐driven approaches, we use a rotation/translation invariant representation which defines the plausible deformations in a global continuous space. By effectively exploiting the knowledge in the shape space, our method produces realistic interpolation results at interactive rates, outperforming state‐of‐the‐art methods for challenging cases. We further propose a novel approach to interactive editing of shape morphing according to the shape distribution. The user can explore the morphing path and select example models intuitively and adjust the path with simple interactions to edit the morphing sequences. This provides a useful tool to allow users to generate desired morphing with little effort. We demonstrate the effectiveness of our approach using various examples.  相似文献   

4.
We propose an approach for interactive 3D face editing based on deep generative models. Most of the current face modeling methods rely on linear methods and cannot express complex and non-linear deformations. In contrast to 3D morphable face models based on Principal Component Analysis (PCA), we introduce a novel architecture based on variational autoencoders. Our architecture has multiple encoders (one for each part of the face, such as the nose and mouth) which feed a single decoder. As a result, each sub-vector of the latent vector represents one part. We train our model with a novel loss function that further disentangles the space based on different parts of the face. The output of the network is a whole 3D face. Hence, unlike part-based PCA methods, our model learns to merge the parts intrinsically and does not require an additional merging process. To achieve interactive face modeling, we optimize for the latent variables given vertex positional constraints provided by a user. To avoid unwanted global changes elsewhere on the face, we only optimize the subset of the latent vector that corresponds to the part of the face being modified. Our editing optimization converges in less than a second. Our results show that the proposed approach supports a broader range of editing constraints and generates more realistic 3D faces.  相似文献   

5.
A long-standing challenge in geometric modeling is providing a natural, intuitive interface for making local deformations to 3D surfaces. Previous approaches have provided either interactive manipulation or physical simulation to control surface deformations. In this paper, we investigate combining these two approaches with a painting interface that gives the user direct, local control over a physical simulation. The “paint” a user applies to the model defines its instantaneous surface velocity. By interactively simulating this velocity, the user can effect surface deformations. We have found that this painting metaphor gives the user direct, local control over surface deformations for several applications: creating new models, removing noise from existing models, and adding geometric texture to an existing surface at multiple scales.  相似文献   

6.
In this extended version of our Symposium on Computer Animation paper, we describe a domain-decomposition method to simulate articulated deformable characters entirely within a subspace framework. We have added a parallelization and eigendecomposition performance analysis, and several additional examples to the original symposium version. The method supports quasistatic and dynamic deformations, nonlinear kinematics and materials, and can achieve interactive time-stepping rates. To avoid artificial rigidity, or “locking,” associated with coupling low-rank domain models together with hard constraints, we employ penaltybased coupling forces. The multidomain subspace integrator can simulate deformations efficiently, and exploits efficient subspace-only evaluation of constraint forces between rotated domains using a novel Fast Sandwich Transform (FST). Examples are presented for articulated characters with quasistatic and dynamic deformations, and interactive performance with hundreds of fully coupled modes. Using our method, we have observed speedups of between 3 and 4 orders of magnitude over full-rank, unreduced simulations.  相似文献   

7.
We present an approach for the automatic generation, interactive exploration and real‐time modification of disassembly procedures for complex, multipartite CAD data sets. In order to lift the performance barriers prohibiting interactive disassembly planning, we run a detailed analysis on the input model to identify recurring part constellations and efficiently determine blocked part motions in parallel on the GPU. Building on the extracted information, we present an interface for computing and editing extensive disassembly sequences in real‐time while considering user‐defined constraints and avoiding unstable configurations. To evaluate the performance of our C++/CUDA implementation, we use a variety of openly available CAD data sets, ranging from simple to highly complex. In contrast to previous approaches, our work enables interactive disassembly planning for objects which consist of several thousand parts and require cascaded translations during part removal.  相似文献   

8.
为了重用已有动画资源,提出一种基于均值坐标的三维动画传输方法.首先使用标记点在源网格和相应的目标网格间建立映射,然后采用均值坐标,根据源网格的动画来变形相应的目标网格.该方法不需要源网格和目标网格有相同的顶点数和三角面片数,也不需要有类似的拓扑信息.  相似文献   

9.
Recently there has been an increasing demand for software that can help designers create functional 3D objects with required physical strength. We introduce a generic and extensible method that directly optimizes a shape subject to physical and geometric constraints. Given an input shape, our method optimizes directly its input mesh representation until it can withstand specified external forces, while remaining similar to the original shape. Our method performs physics simulation and shape optimization together in a unified framework, where the physics simulator is an integral part of the optimizer. We employ geometric constraints to preserve surface details and shape symmetry, and adapt a second‐order method with analytic gradients to improve convergence and computation time. Our method provides several advantages over previous work, including the ability to handle general shape deformations, preservation of surface details, and incorporation of user‐defined constraints. We demonstrate the effectiveness of our method on a variety of prinTable 3D objects through detailed simulations as well as physical validations.  相似文献   

10.
In this paper, we address simultaneous markerless motion and shape capture from 3D input meshes of partial views onto a moving subject. We exploit a computer graphics model based on kinematic skinning as template tracking model. This template model consists of vertices, joints and skinning weights learned a priori from registered full‐body scans, representing true human shape and kinematics‐based shape deformations. Two data‐driven priors are used together with a set of constraints and cues for setting up sufficient correspondences. A Gaussian mixture model‐based pose prior of successive joint configurations is learned to soft‐constrain the attainable pose space to plausible human poses. To make the shape adaptation robust to outliers and non‐visible surface regions and to guide the shape adaptation towards realistically appearing human shapes, we use a mesh‐Laplacian‐based shape prior. Both priors are learned/extracted from the training set of the template model learning phase. The output is a model adapted to the captured subject with respect to shape and kinematic skeleton as well as the animation parameters to resemble the observed movements. With example applications, we demonstrate the benefit of such footage. Experimental evaluations on publicly available datasets show the achieved natural appearance and accuracy.  相似文献   

11.
We present design principles for conceiving tangible user interfaces for the interactive physically-based deformation of 3D models. Based on these design principles, we developed a first prototype using a passive tangible user interface that embodies the 3D model. By associating an arbitrary reference material with the user interface, we convert the displacements of the user interface into forces required by physically-based deformation models. These forces are then applied to the 3D model made out of any material via a physical deformation model. In this way, we compensate for the absence of direct haptic feedback, which allows us to use a force-driven physically-based deformation model. A user study on simple deformations of various metal beams shows that our prototype is usable for deformation with the user interface embodying the virtual beam. Our first results validate our design principles, plus they have a high educational value for mechanical engineering lectures.  相似文献   

12.
This paper provides a solution to the problem of minimum mass design of multi-purpose trusses for which the design variables are not only the areas of the bars but also the positions of the joints. Displacement constraints and non-constant stress constraints (stability) are taken into account.

With multiple loading systems, the optimal structure is normally statically indeterminate and generally not even ·fully stressed”. The solution is obtained by successive iterations, using a gradient method with move-limits. For each iteration only the critical forces and displacements are considered and trusses with up to 40 joints have been optimized.

Analytical expressions are derived for the necessary gradients, i.e. for the partial derivatives of the displacements and forces with respect to the bar areas and joint coordinates.  相似文献   


13.
In multiview 3D TV, a pair of corresponding pixels in adjacent 2D views contributes to the reconstruction of voxels (3D pixels) in the 3D scene. We analyze this reconstruction process and determine the optimal pixel aspect ratio based on which the estimated object position can be improved given specific imaging or viewing configurations and constraints. By applying mathematical modeling, we deduce the optimal solutions for two general stereo configurations: parallel and with vergence. We theoretically show that for a given total resolution a finer horizontal resolution, compared to the usual uniform pixel distribution, in general, provides a better 3D visual experience for both configurations. The optimal value may vary depending on different configuration parameter values. We validate our theoretical results by conducting subjective studies using a set of simulated non-square discretized red–blue stereo pairs and show that human observers indeed have a better 3D viewing experience with an optimized vs. a non-optimized representation of 3D-models.  相似文献   

14.
Real-time physics simulation has been extensively used in computer games, but its potential has yet to be fully realized in design and education. We present an interactive 3D physics engine with a wide variety of applications.In common with traditional FEM, the use of a local element stiffness matrix is retained. However, unlike typical non-linear FEM routines elements forces, moments and inertia are appropriately lumped at nodes following the dynamic relaxation method. A semi-implicit time integration scheme updates linear and angular momentum, and subsequently the local coordinate frames of the nodes. A co-rotational approach is used to compute the resultant field of displacements in global coordinates including the effect of large deformations. The results obtained compare well against established commercial software.We demonstrate that the method presented allows the making of interactive structural models that can be used in teaching to develop an intuitive understanding of structural behaviour. We also show that the same interactive physics framework allows real-time optimization that can be used for geometric and structural design applications.  相似文献   

15.
16.
提出了一种新的基于单视图深度序列的手部运动跟踪和表面重建方法。在假设任 意一对关键点的对应性在所有手部姿态上均一致基础上,使用一个平滑的手部网格模板来提供 形状和拓扑先验,引入多个能量函数构造输入扫描与模板之间三维关键点到关键点的对应性, 并将其整合到一个可用的非刚性配准管线中,以实现精确的表面拟合。通过最小化手部模板和 输入深度图像序列之间的误差来捕获非刚性的手部运动。采用迭代求解的方法,通过显式的关 键点到关键点之间的对应性,逐步细化手部关节区域的变形,从而达到快速收敛和合理变形的 目的。在含有噪声的手部深度图像序列上的大量实验表明,该方法能够重建精确的手部运动, 并且对较大的变形和遮挡具有鲁棒性。  相似文献   

17.
In this paper, we present a novel constrained texture mapping method based on the harmonic map. We first project the surface of a 3D model on a planar domain by an angle-based-flattening technique and perform a parametrization. The user then specifies interactively the constraints between the selected feature points on the parametric domain of the 3D model and the corresponding pixels on the texture image; the texture coordinates of other sample points on the 3D model are determined based on harmonic mapping between the parametric domain of the model and the texture image; finally we apply an adaptive local mapping refinement to improve the rendering result in real-time. Compared with other interactive methods, our method provides an analytically accurate solution to the problem, and the energy minimization characteristic of the harmonic map reduces the potential distortion that may result in the constrained texture mapping. Experimental data demonstrate good rendering effects generated by the presented algorithm.  相似文献   

18.
We present a two-level approach for height map estimation from single images, aiming at restoring brick and stone relief(BSR) from their rubbing images in a visually plausible manner. In our approach, the base relief of the low frequency component is estimated automatically with a partial differential equation (PDE)-based mesh deformation scheme. A few vertices near the central area of the object region are selected and assigned with heights estimated by an erosion-based contour map. These vertices together with object boundary vertices, boundary normals as well as the partial differential properties of the mesh are taken as constraints to deform the mesh by minimizing a least-squares error functional. The high frequency detail is estimated directly from rubbing images automatically or optionally with minimal interactive processing. The final height map for a restored BSR is obtained by blending height maps of the base relief and high frequency detail. We demonstrate that our method can not only successfully restore several BSR maps from their rubbing images, but also restore some relief-like surfaces from photographic images.  相似文献   

19.
Modeling and Animating Realistic Faces from Images   总被引:4,自引:0,他引:4  
We present a new set of techniques for modeling and animating realistic faces from photographs and videos. Given a set of face photographs taken simultaneously, our modeling technique allows the interactive recovery of a textured 3D face model. By repeating this process for several facial expressions, we acquire a set of face models that can be linearly combined to express a wide range of expressions. Given a video sequence, this linear face model can be used to estimate the face position, orientation, and facial expression at each frame. We illustrate these techniques on several datasets and demonstrate robust estimations of detailed face geometry and motion.  相似文献   

20.
Deformation grammars are a novel procedural framework enabling to sculpt hierarchical 3D models in an object‐dependent manner. They process object deformations as symbols thanks to user‐defined interpretation rules. We use them to define hierarchical deformation behaviours tailored for each model, and enabling any sculpting gesture to be interpreted as some adapted constraint‐preserving deformation. A variety of object‐specific constraints can be enforced using this framework, such as maintaining distributions of subparts, avoiding self‐penetrations or meeting semantic‐based user‐defined rules. The operations used to maintain constraints are kept transparent to the user, enabling them to focus on their design. We demonstrate the feasibility and the versatility of this approach on a variety of examples, implemented within an interactive sculpting system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号