首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work we consider the fluid-structure interaction in fully nonlinear setting, where different space discretization can be used. The model problem considers finite elements for structure and finite volume for fluid. The computations for such interaction problem are performed by implicit schemes, and the partitioned algorithm separating fluid from structural iterations. The formal proof is given to find the condition for convergence of this iterative procedure in the fully nonlinear setting. Several validation examples are shown to confirm the proposed convergence criteria of partitioned algorithm. The proposed strategy provides a very suitable basics for code-coupling implementation as discussed in Part II.  相似文献   

2.
《Advanced Powder Technology》2021,32(10):3689-3705
This paper presents the results of a 3-D numerical simulation of a freely bubbling fluidized bed, based on the Eulerian–Lagrangian approach, using the software Barracuda (CPFD-Barracuda). The main results obtained were assessed in terms of frequency analysis, bubble pierced length, bubble size, bubble passage frequency and bubble velocity. The results obtained were also compared with experimental data obtained in a 3-D fluidized bed using pressure and optical probes, and with the numerical results using the more common Eulerian-Eulerian approach, implemented in the commercial software Fluent (TFM-Fluent).The results show that CPFD-Barracuda satisfactorily predicts the global behaviour of bubbling beds with a low computational cost, although it computes smaller bubble sizes and lower bubble velocities than TFM-Fluent and experiments. Additionally, the spectra of pressure and particle volume fraction obtained with CPFD-Barracuda resemble those from the experiments and the TFM-Fluent simulations, but with a larger contribution of lower frequencies. The peaks of the pressure spectra from CPFD-Barracuda are close to those from the experiments and the TFM-Fluent simulations, whereas those in the solid volume spectra seem to be underestimated by CPFD-Barracuda. The results also indicate that the particle fraction threshold value chosen to distinguish bubbles contours notably influences the results of the bubble characteristics, especially for TFM-Fluent, whereas CPFD-Barracuda is less sensitive to this threshold value.  相似文献   

3.
Study of liquid sloshing: numerical and experimental approach   总被引:1,自引:0,他引:1  
In this paper, sloshing phenomenon in a rectangular tank under a sway excitation is studied numerically and experimentally. Although considerable advances have occurred in the development of numerical and experimental techniques for studying liquid sloshing, discrepancies exist between these techniques, particularly in predicting time history of impact pressure. The aim of this paper is to study the sloshing phenomenon experimentally and numerically using the Smoothed Particle Hydrodynamics method. The algorithm is enhanced for accurately calculating impact load in sloshing flow. Experiments were conducted on a 1:30 scaled two-dimensional tank, undergoing translational motion along its longitudinal axis. Two different sloshing flows corresponding to the ratio of exciting frequency to natural frequency were studied. The numerical and experimental results are compared for both global and local parameters and show very good agreement.  相似文献   

4.
5.
根据计算流体力学原理(CFD),对不同的管道条件进行数值模拟,分析管道内流场分布情况,并通过实流试验和CFD数值模拟试验的结果比较,讨论了影响在线流量计检定结果的因素。将CFD技术应用到现场在线流量计检定,能够优化检定结果,保证数据的可靠性,从而更好解决一部分不能离线检定的流量计的量值溯源问题。  相似文献   

6.
This paper presents the numerical simulation of an industrial multi-step deep drawing process. A large strain finite element formulation including a hyperelastic elastoplastic constitutive model and a contact-friction law is used to this end where the steel sheet material parameters considered in the analysis are previously derived through a characterization procedure of its mechanical response. The numerical predictions of the final shape and thickness distribution of the blank are compared and discussed with available experimental values measured at the end of three successive drawing steps. In addition, a plastic work-based damage index is used to assess failure occurrence during the process. The damage values computed at the end of the drawing process are found to be lower than that corresponding to rupture in the tensile test, considered here as the threshold of failure, confirming, as observed experimentally, that neither fracture nor necking is developed in the blank during the whole drawing process. Finally, the possibility to carry out a reduced two-step drawing process, obtained by merging the second and third steps of the three-step process, is precluded since the damage criterion predicts in this case excessively large values that indicate that failure may occur in specific zones of the sheet.  相似文献   

7.
This paper introduces a new type of tuned liquid damper (TLD) having a relatively simple, easy-to-model behavior and high effectiveness in controlling structural vibrations. It consists of a traditional TLD with addition of a floating roof. Since the roof is much stiffer than water, it prevents wave breaking, hence making the response linear even at large amplitudes. The roof also facilitates the incorporation of supplemental devices with which the level of damping of the liquid vibration can be substantially augmented. This newly proposed TLD, denoted as tuned liquid damper with floating roof (TLD-FR), maintains the traditional advantages of TLDs (low cost, easy installation and tuning), but its numerical characterization is much simpler because the floating roof suppresses higher sloshing vibration modes, resulting in a system that can be represented by a single-degree-of-freedom model. An efficient numerical scheme, where the dynamic behavior of the TLD-FR is expressed as a second-order lineal system of equations, is discussed and validated by scaled experimental tests. The equations of motion of a structure equipped with a TLD-FR are then derived and manipulated to offer a unifying representation dependent upon only four model characteristics of the TLD-FR: The first three (mass, frequency and damping ratios) are common for all type of mass dampers, whereas the final one, termed efficiency index, is related to a similar parameter used to characterize liquid column dampers. Through this approach, the behavior of the proposed TLD-FR can be easily correlated with the behavior of other well-known linear mass damper devices. The relationship between these parameters and the geometrical characteristics of the TLD-FR is also examined. Finally, the identification of the optimal characteristic of the TLD-FR (natural frequency and damping) under stationary stochastic excitation is discussed.  相似文献   

8.
The paper aims to introduce new fluid–structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.  相似文献   

9.
In this paper are described a hybrid dynamic model for transient simulation of refrigeration systems as well as dynamic experiments that have been performed on an air/water heap pump. The machine under consideration is made of an evaporator, a condenser, an expansion valve, a variable speed scroll compressor and a receiver. The refrigerant and second fluid flows in heat exchangers are approximated by a cascade of Continuous Stirred Tank Reactors (CSTRs). This model is quite flexible since a unique structure is used for the evaporator and the condenser models according to different boundary conditions. This is due to the use of a switching procedure between different configurations based on a phase stability test that is designed to ensure the continuity of the system simulation. An analytical thermodynamic model of the refrigerant based on an equation of state is used. Good agreement between simulation results and experimental data is achieved.  相似文献   

10.
The surface distribution of heat transfer coefficients (h) is often determined point by point using surface temperature measurements of the tested object, initially at a uniform temperature and impulsively imposed with a convective boundary condition, and the solution to the transient heat conduction equation for a semi-infinite medium. There are many practical cases where this approach fails to adequately model the temperature field and, consequently, leads to erroneous h values. In this paper, we present an inverse BEM-based approach for the retrieval of spatially varying h distributions from surface temperature measurements. In this method, a convolution BEM marching scheme is used to solve the conduction problem. At each time level, a regularized functional is minimized to estimate the current heat flux and simultaneously smooth out uncertainties in calculated h values due to experimental uncertainties in measured temperatures. Newton's cooling law is then invoked to compute h. Results are presented from a numerical simulation and from an experiment. It is also shown that the method can be readily applied to steady-state.  相似文献   

11.
《Advanced Powder Technology》2020,31(11):4457-4469
There are numerous experimentally validated simulations for mono-dispersed systems in the literature based on discrete element method (DEM). In practice, however, most of granular systems consist of polydispersed assemblies of particles. Few studies have considered the effect of polydispersity, and yet fewer have experimentally validated the results. In this study, application of a new experimental method for granular flow analysis is presented, capable of validating the results of an in-house developed GPU-based DEM solver in both monodispersed and polydispersed assemblies. Silo discharge is chosen as the case study in which discharge time, flow pattern and more importantly, the outlet composition variation with time (for polydispersed configurations) have been experimentally evaluated and validated with numerical results. The outlet composition, which is the ratio of fine to coarse particles in the outlet stream, is an essential measure of segregation in polydispersed silos, and its numerical prediction can be correct only if the interactions between fine and coarse particles within the silo are modelled precisely. Measuring this parameter is not possible using conventional experimental methods established in silo discharge studies such as high speed photographing or high-frequency weight measurement of the bed. A new apparatus has been developed which can measure this parameter. The device is a compartmented wheel rotating with a motor which gathers the outlet stream of the silo into different compartments. Due to practical limitations, design and function of the apparatus are not ideal. Forward mixing, distribution of particles with the same resident time in different compartments, is the most critical problem. Non-idealities must be compensated by means of post-processing codes so that comparable results are obtained from experiment and simulation.  相似文献   

12.
Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.  相似文献   

13.
14.
The representation of non-spherical particles in discrete element method (DEM) has not been addressed adequately. Although the multiple sphere method (MSM) is the most popular approach to describe non-spherical particle shape, the validity of the MSM has not been established yet. The purpose of this study is to examine the validity and adequacy of the MSM. A uni-axial confined compression test was designed and set up to study the mechanical behaviour of an ellipsoidal granular assembly under vertical loading and the load transfer to the contacting boundary. Four levels of multi-sphere approximation for an axi-symmetric ellipsoidal particle were employed in DEM simulation to investigate the adequacy of multi-sphere approximation. A comparison on compression characteristics between the numerical and experimental results was made and discussed in this paper. Most of the compared physical properties showed reasonable agreement, indicating that capturing the key linear dimensions of a non-spherical particle may be sufficient to predict reasonable results. A small number of sub-spheres (say, N?≥?5) for representing an axi-symmetric ellipsoidal particle can give plausible results. However, the DEM simulations also produced a certain extent of discrepancy in loading stiffness with experiments. Plausible explanations are provided and require further investigation.  相似文献   

15.
When subjected to blast loading, fragments ejected by concrete or masonry structures present a number of potential hazards. Airborne fragments pose a high risk of injury and secondary damage, with the resulting debris field causing major obstructions. The capability to predict the spatial distribution of debris of any structure as a function of parameterised blast loads will offer vital assistance to both emergency response and search and rescue operations and aid improvement of preventative measures. This paper proposes a new method to predict the debris distribution produced by masonry structures which are impacted by blast. It is proposed that describing structural geometry as an array of simple modular panels, the overall debris distribution can be predicted based on the distribution of each individual panel. Two experimental trials using 41 kg TNT equivalent charges, which subjected a total of nine small masonry structures to blast loading, were used to benchmark a computational modelling routine using the Applied Element Method (AEM). The computational spatial distribution presented good agreement with the experimental trials, closely matching breakage patterns, initial fragmentation and ground impact fragmentation. The collapse mechanisms were unpredictable due to the relatively low transmitted impulse; however, the debris distributions produced by AEM models with matching collapse mechanisms showed good agreement with the experimental trials.  相似文献   

16.
This paper presents the numerical simulation and experimental validation of acoustic streaming in micromachined flexural plate wave (FPW) devices. Two-dimensional and three-dimensional models of two device types were considered: the classical device with parallel interdigitated electrodes and the focused device with curved electrodes. Influences of different parameters on the time-averaged velocity were investigated. Thermal transport effects of the acoustic streaming were also considered. We observed the amplifying effect of the streaming in the second type numerically and experimentally. To verify simulation results, the method of the particle image velocimetry (PIV) was applied in the experimental investigation.  相似文献   

17.
A finite element formulation to compute the wear between three‐dimensional flexible bodies that are in contact with each other is presented. The contact pressure and the bodies displacements are calculated using an augmented Lagrangian approach in combination with a mortar method, which defines the contact kinematics. The objective of this study is to characterize the wear rate coefficients for bimetallic pairs and to numerically predict the wear depths in new component designs. The proposed method is first validated with the classical pin‐on‐disc problem. Then, experimental results of wear for the metallic pairs used in internal combustion engine valves and inserts are presented and are taken as a reference solution. An example is provided that shows agreement of the numerical and experimental solution. Finally, the proposed algorithm is used to predict the wear in an application example: the wear in an internal combustion engine valve. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A generalized mathematical model was developed to simulate food refrigeration in air. The model takes into account surface water evaporation. It allows food physical properties to be considered as functions of temperature and/or composition, while providing means for including internal heat generation, composite materials (for instance, flesh and skin) and time-varying external temperature and humidity. Wetted surfaces and packaging can also be accounted for by the model, which can be used for spheres, infinite or finite cylinders, slabs. The numerical method was developed using the Crank-Nicolson scheme, and compared with exact analytical solutions as well as with experimental data on the refrigeration of various foods.  相似文献   

19.
Hongbing Y  Yongkang Z  Xia Y  Anzhi H 《Applied optics》2008,47(13):2371-2375
Orthogonal projection sampling mode was proposed to reconstruct the incomplete-data flow field in optical computerized tomography (OCT). With numerical simulation technique, a two-peak plane symmetric flow field was reconstructed in different sampling modes and discussed in simulated results is the reconstructive accuracy with error indexes, such as mean square error (MSE) and peak error (PE). The corresponding experiments were researched with a Fabry-Perot rotary interferometer. The results indicated that the errors were drastically reduced and the precision was improved when orthogonal projection sampling mode was adopted in the reconstruction of the incomplete data field. The MSE obtained with orthogonal sampling mode was decreased 72.81% from that of the sequential projection sampling mode (the difference between the MSE obtained with the orthogonal sampling mode and that with the sequential sampling mode divided by the MSE of the sequential sampling mode) and the PE was decreased by 73.97%. The precision obtained from the experimental results reached 10%, which showed the orthogonal projection sampling could be a practicable sampling mode for the incomplete data field reconstruction in OCT and could provide some guidance for the flow-field measurement and apparatus design in the practical situation.  相似文献   

20.
Using protons for the treatment of ocular melanoma (especially of posterior pole tumours), the radiation quality of the beam must be precisely assessed to preserve the vision and to minimise the damage to healthy tissue. The radiation quality of a therapeutic proton beam at the Centre Antoine Lacassagne in Nice (France) was measured using microdosimetric techniques, i.e. a miniaturised version of a tissue-equivalent proportional counter. Measurements were performed in a 1-μm site at different depths in a Lucite phantom. Experimental data showed a significant increase in the beam quality at the distal edge of the spread-out Bragg peak (SOBP). In this paper, the numerical simulation of the experimental setup is done with the FLUKA Monte Carlo radiation transport code. The calculated microdosimetric spectra are compared with the measured ones at different depths in tissue for a monoenergetic proton beam (E=62 MeV) and for a modulated SOBP. Numerically and experimentally predicted relative biological effectiveness values are in good agreement. The calculated frequency-averaged and dose-averaged lineal energy mean values are consistent with measured data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号