共查询到20条相似文献,搜索用时 8 毫秒
1.
在基于四叉堆优先级队列的改进型Dijkstra 最短路径算法的基础上,进一步提出了利用交通网络的空间分布及方位特征构造限制区域的时间最短路径算法。在对城市交通网络空间分布特征进行统计分析的基础上,针对具体的起、终节点,设定合理的椭圆限制搜索区域,以减少算法的搜索规模。针对椭圆限制搜索区域算法由于计算量大而效率不高的弱点,提出了矩形限制搜索区域算法,达到既减小算法搜索规模,又提高算法运行效率的目的。试验结果显示了本文提出的限制搜索区域算法的合理性与有效性 相似文献
2.
在基于四叉堆优先级队列的改进型Dijkstra最短路径算法的基础上,进一步提出了利用交通网络的空间分布及方位特征构造限制区域的时间最短路径算法。在对城市交通网络空间分布特征进行统计分析的基础上,针对具体的起,终节点,设定合理的椭圆限制搜索区域,以减少算法的搜索规模。 相似文献
3.
最短路径算法广泛应用在GIS(地理信息系统)、机器人探路、计算机网络等领域,经过几十年发展,有了很大进展.现在流行的最短路径算法有Dijkstra算法、A*算法,它们都建立在信息完全准确、静态路网的前提下.但现实中信息常常不准确、不完整,路途环境不断变化.当环境变化时,需要重新修改整个路径,因而速度较慢.介绍一种动态最短路径算法,初始时建立好最短路径,当环境变化时,可以只计算变化处附近局部节点,减少计算量,从而较迅速做出新的最短路径选择.最后经过仿真看出,路网中节点越多,动态最短路径算法优势越大. 相似文献
4.
Camil Demetrescu 《Information Processing Letters》2003,86(3):129-136
Given a weighted directed graph G=(V,A), the minimum feedback arc set problem consists of finding a minimum weight set of arcs A′⊆A such that the directed graph (V,A?A′) is acyclic. Similarly, the minimum feedback vertex set problem consists of finding a minimum weight set of vertices containing at least one vertex for each directed cycle. Both problems are NP-complete. We present simple combinatorial algorithms for these problems that achieve an approximation ratio bounded by the length, in terms of number of arcs, of a longest simple cycle of the digraph. 相似文献
5.
一种改进的蚁群算法求解最短路径问题 总被引:25,自引:3,他引:25
蚁群算法是一种新型的模拟进化算法,为求解复杂的组合优化问题提供了一种新的思路。该文应用蚁群算法求解最短路径问题,对算法的选择策略、局部搜索、信息量修改三方面进行改进,使算法不易陷入局部最优解,并且能较快地收敛到全局最优解。实验结果表明,改进方法是合理的、有效的。 相似文献
6.
7.
一种新的Kth最短路径搜索算法 总被引:1,自引:0,他引:1
借助于“背离”路径的概念,论文在2nd最短路径搜索算法的基础上提出了一种新的Kth最短路径搜索算法,并将其应用至实际环境中。通过K-1次2nd最短路径搜索算法的迭代,该算法可以求出网络中任意两个给定节点之间的Kth最短路径,2nd最短路径搜索算法在计算上具有简单性,因而也同样具有简洁、快速的特点。 相似文献
8.
9.
求受顶点数限制的最短路径问题的一个算法 总被引:8,自引:1,他引:8
提出了求受顶点数限制的最短路径问题的一个算法,与现有的算法相比,该算法效率较高,时间复杂度为O((k-2)m^2)(k是受限制的顶点数,n是图中顶点总数),而且该算法比较简单,易于描述,实现和理解. 相似文献
10.
通过对网络路由最短路径问题进行分析,使用伊藤算法求解以费用最低为目标的路由优化问题,建立最短路径路由问题的网络结构模型。为加快伊藤算法求解费用最低路由的收敛速度,在状态转移策略中引入费用启发因子,优化漂移和波动过程,并改进路径权重更新规则。将种群交叉思想引入算法中,利用种群间的信息交流加快了算法的收敛速度并提高了寻优能力。在2-opt算子局部优化的基础上加入反转算子,避免陷入局部最优解。文中还对算法的收敛性进行了系统分析。实验结果表明,改进后的算法有效提升了收敛速度并加强了寻优能力。 相似文献
11.
12.
13.
A Primal-dual Neural Network for Shortest Path Problem 总被引:1,自引:0,他引:1
The shortest path (SP) problem is a classical combinatorial optimization problem which plays an important role in a packet-switched computer and communication network. A new primal-dual neural network to solve the shortest path problem (PDSPN) is presented in this paper. The proposed neural network combines many features such as no network coefficients set,easy implementation in a VLSI circuit, and is proved to be completely stable to the exact solutions. The simulation example shows its efficiency in finding the "optimum" path(s) for data transmission in computer and communication network. 相似文献
14.
Raphaël Clifford 《Information Processing Letters》2011,111(7):323-325
Consider the following problem. Given u sets of sets A1,…,Au with elements over a universe E={e1,…,en}, the goal is to select exactly one set from each of A1,…,Au in order to maximize the size of the intersection of the sets. In this paper we present a gap-preserving reduction from Max-Clique which enables us to show that our problem cannot be approximated within an n1−? multiplicative factor, for any ?>0, unless P=NP (Zuckerman, 2006 [12]). 相似文献
15.
16.
GIS中最短路径的算法研究与仿真 总被引:13,自引:3,他引:13
最短路径是GIS应用中的主要问题之一。通过对GIS中最短路径理论和实现算法的分析和研究 ,该文对传统的Dijk stra算法和启发式搜索算法A 算法进行了详细的探讨 ,并说明了各自的特点及适用条件。在对一些最短路径算法测试结果总结的基础上 ,根据GIS中网络计算的实际情况 ,对搜索算法的数据结构和存储方式进行了优化。最后 ,利用MapObjects组件对国家基础地理信息系统 (NFGIS)中的公路数据文件进行了仿真分析 ,得出一些有益的结论。 相似文献
17.
Cees Duin 《Algorithmica》2005,41(2):131-145
We formulate and study an algorithm for all-pairs
shortest paths in a network with $n $ nodes and $m $ arcs of
positive length. Using the dynamic programming principle of optimality of
subpaths the algorithm avoids redundant updates of distance labels. A shortest $v$--$w$ path, say $\langle v,
r_{1} , r_{2} , \ldots ,
r_{k } = w \rangle$ with $k $ arcs
($k \geq 1$), is only then combined with an arc
$(w,t) \in A$ to update the distance label of pair
$v$--$t$, if $(w,t) $ is present on the shortest
$r_{\ell } $--$ t$ path for each node
$r_{\ell}$ $(\ell=k- 1 , k- 2,
\ldots, 1) $.
The algorithm extracts shortest paths in order of length from a data structure
and builds two shortest path trees per node, an extra effort of
$O(n^{2})$. This way it can execute efficiently only the
aforementioned distance updates, by picking the arcs $(w,t)$ out of
these trees. The time complexity order per distance update and path extraction
is similar as in other algorithms. An implementation with a data structure of
heaps is possible, but a bucket-type data structure may be more appropriate.
The implied number of distance updates does not exceed
$nm_{0}$ ($m_{0}$ being the total number of
shortest path arcs), but is frequently much lower. In extreme cases the new
algorithm applies $O(n^{2})$ distance updates, whereas known
algorithms require $\Omega( n ^{3})$ updates.
The algorithm is especially suited for undirected graphs; here the construction
of one tree per node is sufficient and the computation times halve. 相似文献
18.
一种新型最短路径搜索算法的研究 总被引:2,自引:3,他引:2
在深入分析Dijksdtra算法的基础上,考虑到图节点之间的拓扑关系以及Dijksdtra算法在计算节点权值时,与已着色节点不相关节点权值存在∞(即该节点不可见),文章提出了盲目区域最短路径搜索算法,由分析可知计算量大为减少,算法更优。 相似文献
19.
20.
Cees Duin 《Algorithmica》2004,41(2):131-145
We formulate and study an algorithm for all-pairs
shortest paths in a network with $n $ nodes and $m $ arcs of
positive length. Using the dynamic programming principle of optimality of
subpaths the algorithm avoids redundant updates of distance labels. A shortest $v$--$w$ path, say $\langle v,
r_{1} , r_{2} , \ldots ,
r_{k } = w \rangle$ with $k $ arcs
($k \geq 1$), is only then combined with an arc
$(w,t) \in A$ to update the distance label of pair
$v$--$t$, if $(w,t) $ is present on the shortest
$r_{\ell } $--$ t$ path for each node
$r_{\ell}$ $(\ell=k- 1 , k- 2,
\ldots, 1) $.
The algorithm extracts shortest paths in order of length from a data structure
and builds two shortest path trees per node, an extra effort of
$O(n^{2})$. This way it can execute efficiently only the
aforementioned distance updates, by picking the arcs $(w,t)$ out of
these trees. The time complexity order per distance update and path extraction
is similar as in other algorithms. An implementation with a data structure of
heaps is possible, but a bucket-type data structure may be more appropriate.
The implied number of distance updates does not exceed
$nm_{0}$ ($m_{0}$ being the total number of
shortest path arcs), but is frequently much lower. In extreme cases the new
algorithm applies $O(n^{2})$ distance updates, whereas known
algorithms require $\Omega( n ^{3})$ updates.
The algorithm is especially suited for undirected graphs; here the construction
of one tree per node is sufficient and the computation times halve. 相似文献