首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
Nucleate boiling heat transfer coefficients were measured on a horizontal heated wire during the pool boiling of non‐azeotropic mixtures of ammonia/water. The experiment was carried out at pressures of 0.4 and 0.7 MPa, at heat fluxes below 2.0 × 106 W/m2, and over a range of mass fraction. The heat transfer coefficients in the mixtures were smaller than those in single‐component substances. No existing correlation is found to predict boiling heat transfer coefficients over the range of mass fraction of interest. In the mixtures of the ammonia/water, the heats of dilution and dissolution were generated near a liquid surface while vapor with a rich concentration of ammonia was condensed and then was diffused into the bulk liquid; while in most other mixtures, little heat was generated during any dilution and dissolution. In relation to the heat generated, the effect of the heats of dilution and dissolution on pressure and temperature in a system (pressure vessel) is shown herein. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(4): 272–283, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10034  相似文献   

2.
Nucleate boiling heat transfer coefficients of ammonia/water mixtures have been measured when a surface‐active agent was added into the mixtures. The experiment has been carried out on a horizontal heated wire at a pressure of 0.4 MPa. The effect of concentration of the ammonia and the surface‐active agent on the coefficients was investigated experimentally for the ammonia fractions C = 0.3 and 0.7 and the surfactant concentration CS = 0 to 3500 ppm. The result shows that just after onset of boiling the nucleate boiling heat transfer coefficient enhances at the lower ammonia fraction i.e., C = 0.3. It was found that the enhancement effect by the surface‐active agent disappeared when the surfactant concentration is more than 1000 ppm at an ammonia fraction C = 0.3. It is also shown that the generated heat of mixing near the vaporBliquid interface can be removed easily and the pressure and temperature in the system can be controlled easily by placing a cooling pipe on the vaporBliquid interface, resulting in improvement of accuracy in measuring the heat transfer coefficients. We correlated the effect of the surfactant on the heat transfer coefficient using the improved measurement data in the current paper. 8 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20328  相似文献   

3.
Surface tension of ethanol/water mixtures is measured over the whole ethanol fraction range and the effect of the surface-active agent on surface tension is also measured in the mixtures, in order to gain basic data related to enhancement of the heat transfer coefficient in water and the mixtures. The boiling heat transfer coefficient, the onset of boiling and the critical heat flux in water and ethanol/water mixtures, with and without the surface-active agent, have been measured on a horizontal fine heated wire at a pressure of 0.1 MPa. The experiment was carried out in the whole range of the ethanol fraction and in a surfactant concentration of 0-5000 ppm. The experiment shows that the coefficients were enhanced in a lower ethanol fraction (C ? 0.5) and in low heat flux which is slightly higher than heat flux at the onset of boiling. It is also found that the enhancement due to the surfactant disappears over 1000 ppm. Finally, we clarify that depression of the surface tension by the surfactant remarkably enhances the heat transfer coefficients in the nucleate pool boiling.  相似文献   

4.
Nucleate pool boiling heat transfer coefficients of ammonia/water mixtures were measured at a pressure of 0.4 MPa on a horizontal heated fine wire having a diameter of 0.3 mm. The nucleate pool boiling aspects were observed, after the addition of a surface-active agent to the mixtures. The effects of the concentrations of ammonia and the surface-active agent on the coefficients were clarified experimentally for the ammonia fraction range 0.1  C  0.9 and surfactant concentration range 0  CS  3500 ppm. The results showed that the coefficients were enhanced at C  0.5 and in low heat flux ranges just after the onset of boiling. It was also found that the enhancement effect caused by the surfactant disappeared at surfactant concentrations of more than 1000 or 1500 ppm.  相似文献   

5.
To improve the design of modern industrial reboilers, accurate knowledge of boiling heat transfer coefficients is essential. In this study flow boiling heat transfer coefficients for binary and ternary mixtures of acetone, isopropanol and water were measured over a wide range of heat flux, subcooling, flow velocity and composition. The measurements cover the regimes of convective heat transfer, transitional boiling and fully developed subcooled flow boiling. Two models are presented for the prediction of flow boiling heat transfer coefficients. The first model is the combination of the Chen model with the Gorenflo correlation and the Schlünder model for single and multicomponent boiling, respectively. This model predicts flow boiling heat transfer coefficients with acceptable accuracy, but fails to predict the nucleate boiling fraction NBF reasonably well. The second model is based on the asymptotic addition of forced convective and nucleate boiling heat transfer coefficients. The benefit of this model is a further improvement in the accuracy of flow boiling heat transfer coefficient over the Chen type model, simplicity and the more realistic prediction of the nucleate boiling fraction NBF.  相似文献   

6.
This paper describes the experimental results obtained on the heat transfer in saturated nucleate boiling of refrigerant mixtures used in solar absorption refrigeration systems flowing upward in a uniformly heated vertical tube. The mixtures analysed were water/ammonia, ammonia/lithium nitrate and water/lithium bromide. The concentration range for the water/ammonia was from 38 to 48 wt%, for the ammonia/lithium nitrate was from 38 to 48 wt% and for the water/lithium bromide was from 48 to 58 wt%. It was observed that the average heat transfer coefficients increased for the mixtures with an increase in the quality, the heat flux and the solution concentration. Comparing the values of the average heat transfer coefficients for the three mixtures, it was observed that the highest values were obtained for the ammonia/water mixture.  相似文献   

7.
Experimental studies were made on heat transfer on a horizontal platinum wire during nucleate pool boiling in nonazeotropic refrigerant binary mixtures at pressures of 0.25 to 0.7 MPa and at heat fluxes up to CHF. The boiling features of the mixtures and the single-component substances were observed by photography. The relationship between the boiling behavior and the reduction of heat transfer coefficients in binary mixtures is discussed in order to propose a correlation useful for predicting the present experimental data over a wide range of low to high heat fluxes. It is shown that the correlation is applicable to alcoholic mixtures. The physical meaning of k, which was introduced to evaluate the effect of heat flux on the reduction of a heat transfer coefficient, is clarified based on measured nucleate pool boiling heat transfer data and visual observations of the boiling features. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(7): 535–549, 1998  相似文献   

8.
The surface tension of alcohol/water mixtures has been measured over the whole fraction range and then it has been measured when a surface‐active agent was added into the mixtures. The effect of the concentration of alcohol and the surface‐ active agent on surface tension was experimentally clarified, in order to gain base data related to enhancement of the heat transfer coefficient in the mixtures and water. The experiment was also carried out to enhance the boiling heat transfer coefficients of water and alcohol/water mixtures on a horizontal heated fine wire at a pressure of 0.1 MPa by adding a surface‐active agent into the tested liquid. The results show, the coefficients were enhanced in lower alcohol concentration (C ≦ 0.5) and low heat flux range which occur just after the onset of boiling. It was also found that the enhancement effect by the surfactant disappears in concentrations over 1000 ppm. Finally, we demonstrated that the surface tension remarkably affects the heat transfer coefficients in nucleate pool boiling. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(4): 229–244, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20010  相似文献   

9.
This paper presents the thermal and pressure-drop experimental evaluation of a fusion plate heat exchanger (PHE) during boiling conditions of a solution of lithium nitrate in ammonia. The data are representative of the working conditions of generators in single-effect absorption chillers. The solution flow rate and outlet temperature were modified in the ranges of 0.041–0.083 kg/s and 78–95 °C, respectively. Correlations for single-phase-flow heat transfer are used to characterize the boiling heat transfer. The influences of the heat flux, mass flux and exit-vapour quality are analyzed. Boiling heat-transfer coefficients and correlations for the Nusselt number are obtained. Results are compared with Cooper’s and Ayub’s correlations for boiling heat transfer. Pressure drop in the solution side was also measured and one correlation was obtained to characterize the frictional pressure drop under boiling conditions.  相似文献   

10.
This work presents the results of an experimental study concerning the heat transfer characteristics of two-phase flow condensation and boiling of tetrary (R-32/R-125/R143a/R134a) refrigerant mixtures inside water/refrigerant horizontal enhanced surface tubing. Heat transfer characteristics such as average heat transfer coefficients, as well as pressure drops of the tetrary refrigerant mixtures, have been predicted and compared with other mixtures during flow condensation and boiling inside enhanced surface tubing. It was found that the tetrary refrigerant blend has higher transfer coefficients than R-502, and the lowest pressure drop among the refrigerants studied. © 1997 by John Wiley & Sons, Ltd.  相似文献   

11.
Power generation using small temperature difference such as ocean thermal energy conversion (OTEC) and discharged thermal energy conversion (DTEC) is expected to be the countermeasures against global warming problem. As ammonia and ammonia/water are used in evaporators for OTEC and DTEC as working fluids, the research of their local boiling heat transfer is important for improvement of the power generation efficiency. Measurements of local boiling heat transfer coefficients were performed for ammonia /water mixture (z = 0.9−1) on a vertical flat plate heat exchanger in a range of mass flux (7.5–15 kg/m2 s), heat flux (15–23 kW/m2), and pressure (0.7–0.9 MPa). The result shows that in the case of ammonia /water mixture, the local heat transfer coefficients increase with an increase of mass flux and composition of ammonia, and decrease with an increase of heat flux.  相似文献   

12.
For three pure fluids and their two- and three-component mixtures, heat transfer coefficients were measured in nucleate pool boiling on the upward facing copper surface of 40 mm diameter. The more-, moderate- and less-volatile components in mixtures are refrigerants R-134a, R-142b and R-123, respectively. Heat transfer coefficients of mixtures were less than the interpolated heat transfer coefficients between pure components, with more reduction at higher heat flux. Two correlations originally developed for two-component mixtures by Thome and Shakir and by Fujita and Tsutsui reproduced well the measured heat transfer coefficients of three- as well as two-component mixtures. This result implies that the boiling range included in the correlations accounts for heat transfer reduction in mixture boiling.  相似文献   

13.
Heat transfer coefficients in nucleate boiling on a smooth flat surface were measured for pure fluids of R-134a, propane, isobutane and their binary mixtures at different pressure from 0.1 to 0.6 MPa. Series of experiments with different heat flux and mixture concentrations were carried out. The influences of pressure and heat flux on the heat transfer coefficient for different pure fluids were studied. Isobutane and propane were used to make up binary mixtures. Compared to the pure components, binary mixtures show lower heat transfer coefficients. This reduction was more pronounced as the heat flux increasing. Several heat transfer correlations are obtained for different pure refrigerants and their binary mixtures.  相似文献   

14.
《传热工程》2012,33(1):1-16
Abstract

Methane (R50) and ethane (R170) are the dominated components of natural gas and the important components in mixture refrigerants for the mixture Joule–Thomson refrigeration cycle. In this article, experimental investigations on nucleate pool boiling and flow boiling heat transfer characteristics of R50, R170, and their binary mixtures are presented. The effects of saturation pressure, heat flux, mass flux, concentration, and vapor quality on heat transfer coefficients are analyzed and discussed. Firstly, the pool boiling heat transfer data were compared with six well-known correlations. Labuntsov correlation shows the best agreement with a mean absolute relative deviation (MARD) of 11.3%. Secondly, a new flow boiling heat transfer correlation for pure fluids was proposed based on the asymptotic addition of forced convection and pool boiling. The modified enhancement factor and suppression factor were developed to account for their relative contribution. In addition, in order to consider the mass transfer resistance of mixtures, a new mixture factor was deduced. The new flow boiling heat transfer correlations can well predict the experimental data with the MARD of 9.5% for pure fluids and 8.3% for mixtures.  相似文献   

15.
Results are reported of an experimental study of heat transfer in pool boiling of dilute emulsions of pentane in water and FC-72 in water. Heat transfer coefficients for single phase convection, boiling of the dispersed component, and enhanced boiling of the continuous component are reported. Results show that the boiling heat transfer coefficient is a function primarily of superheat of both the dispersed component and continuous component, sub-cooling of the bulk of the emulsion, and volume fraction of the dispersed component up to ~1%. Other properties of the dispersed component are relatively unimportant, as are the geometry of the heated surface and droplet size of the emulsion. Droplets of the dispersed component can accumulate on the heated surface, but this accumulation affects heat transfer only in single phase convection.  相似文献   

16.
An experimental study on the characteristics of two phase flow boiling of pure refrigerants such as R12 and R22 as well as nonazeotropic refrigerant mixtures R22/R114 and R22/R152a inside horizontal enhanced surface tubing is presented. The enhanced surface tubing results showed a significant improvement of the heat transfer over that of an equivalent smooth tube, depending on the mixture components and their concentrations. Correlations are proposed to predict the heat transfer characteristics such as average heat transfer coefficients as well as pressure drops of nonazeotropic refrigerant mixture flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixtures pressure drop is a weak function of the mixture compositions.  相似文献   

17.
HFO1234yf has been proposed for mobile air-conditioners due to its low global warming potential (GWP) and performance comparable to that of R134a. However, its performance is inferior to that of R410A. This makes it difficult to be applied to residential air-conditioners. In order to apply the low-GWP refrigerant to residential air-conditioners, refrigerant mixtures of HFO1234yf and R32 are proposed, and their flow boiling heat transfer performances were investigated at two mass fractions (80/20 and 50/50 by mass%) in a smooth horizontal tube with an inner diameter of 2 mm. The experiments were conducted under heat fluxes ranging from 6 to 24 kW/m2 and mass fluxes ranging from 100 to 400 kg/m2 s at the evaporation temperature of 15 °C. The measured heat transfer coefficients were compared with those of pure HFO1234yf and R32. The results showed that the heat transfer coefficients of the mixture with an R32 mass fraction of 20% were 10–30% less than those of pure HFO1234yf for various mass and heat fluxes. When the mass fraction of R32 increased to 50%, the heat transfer coefficients of the mixture were 10–20% greater than those of pure HFO1234yf under conditions of large mass and heat fluxes. Moreover, the heat transfer coefficients of the mixtures were about 20–50% less than that of pure R32. The performances of the mixtures were examined at different boiling numbers. For refrigerant mixture HFO1234yf and R32 (80/20 by mass%), the nucleate boiling heat transfer was noticeably suppressed at low vapor quality for small boiling numbers, whereas the forced convective heat transfer was significantly suppressed at high vapor quality for large boiling numbers. This indicates that the heat transfer is greatly influenced by the mass diffusion resistance and temperature glide of the mixture.  相似文献   

18.
In this paper, an experimental study on the heat transfer characteristics of two phase flow boiling of ternary non-azeotropic refrigerant mixtures, as well as HFC-134a, inside water/refrigerant horizontal enhanced surface tubing, is presented. Correlations were proposed to predict the boiling heat transfer coefficients and pressure drop, as a function of the flow key parameters.  相似文献   

19.
Ammonia (NH3 or R717) is an important refrigerant whose flow boiling heat transfer needs to be determined in many engineering applications. There have been some studies evaluating the correlations of flow boiling heat transfer coefficients for NH3. However, the number of the correlations evaluated or the number of data points used was limited, which resulted in inconsistent results. This work presents a comprehensive study of the applicability of existing correlations of flow boiling heat transfer coefficients to NH3. From seven independent laboratories, a database consisting of 1157 experimental data points of NH3 flow boiling heat transfer is compiled. The experimental parameter ranges cover mass flux from 10 to 600 kg/m2s, heat flux from 2.0 to 240 kW/m2, vapor quality from 0.002 to 0.997, saturation pressure from 0.19 to 1.6 MPa, and channel inner diameter from 1.224 to 32 mm. Based on the NH3 database, 37 correlations are evaluated and analyzed. The results show that the best correlation has a mean absolute deviation of 40.9%, indicating the need for developing a more accurate correlation for NH3 flow boiling heat transfer. Several topics worthy of further studies are identified.  相似文献   

20.
《Applied Thermal Engineering》2002,22(14):1535-1548
In this paper, an analytical study on the influence of thermophysical properties on heat transfer characteristics of two-phase flow boiling of some refrigerant mixtures in air/refrigerant horizontal enhanced surface tubing is presented.Correlations were proposed to predict the thermophysical properties of refrigerant mixtures such as thermal conductivity and viscosity as well as their impact on the heat transfer characteristics such as average heat transfer coefficients, and pressure drops of R-507, R-404A, R-410A, and R-407C in two-phase flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture's pressure drop is a weak function of the mixture's composition.It was also evident that the proposed improved correlations for predicting the thermophysical properties were applicable to the entire heat and mass flux, investigated in the present study. The deviation between the experimental and predicted value using new and improved correlations for the heat transfer coefficient and pressure drop were <±20 %, for the majority of data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号