首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports a study on the effect of the condenser and evaporator resurfacing on overall performance of a 1 m height closed two-phase thermosyphon. Water was used as working fluid with a fill ratio and operating pressure was 0.75 and 160 mbar, respectively. The thermosyphon performances for plain and modified thermosyphon were studied at 44 power inputs from 43 W to 668 W. The results show that by making the evaporator more hydrophilic and the condenser more hydrophobic, it will be possible to increase the average thermal performance by15.27% and decrease the thermal resistance by 2.35 times compared with the plain one.  相似文献   

2.
This study investigated the effects of cross-sectional geometries, filling ratio and aspect ratio on thermal performance of thermosyphon at different rates of heat input. Two cross-sectional geometries of thermosyphon (circular and flat) were used. Each cross-sectional geometry was charged with distilled water with different filling ratios, aspect ratios and heat input. The results indicated that the FTPCT had a higher average wall temperature in the evaporator section than that of the CTPCT. The maximum heat input had a significant influence on the heat fluxes for each filling ratio and evaporator length. Heat fluxes were increased with an increase of aspect ratio and heat input and decreased slightly at the maximum aspect ratios.  相似文献   

3.
探究两相闭式热虹吸管的传热混沌,以及操作参数对其混沌性和传热性能的影响,建立混沌特征参数与传热性能间的联系。通过搭建实验台测量两相闭式热虹吸管稳定运行过程中不同工况下的管壁温度信号,基于非线性分析的混沌理论研究处理测量的温度脉动信号,绘制吸引子轨迹图,建立最大Lyapunov指数与传热特征参数的联系,揭示传热性能与混沌特性的关系。结果表明:两相闭式热虹吸管具有确定性混沌行为,操作参数对混沌性和传热性能具有显著影响,混沌性与传热性能呈正相关关系。  相似文献   

4.
The effect of the axial conduction through the pipe wall on the performance of a thermosyphon was experimentally investigated in this study. Two 2-phase closed thermosyphons were tested; each had the same dimensions, materials and partially filled with R134a. The only difference between them was that one had a thermal break within the adiabatic section that resisted axial conduction between the evaporator and the condenser sections. The thermosyphons were heated by a constant-temperature hot bath and cooled by water via a concentric heat exchanger. The experiments were performed for different bath temperatures and different fill ratios. It was found that the axial conduction through the pipe wall caused an increase in the overall heat transfer coefficient, evaporation heat transfer coefficient and condensation heat transfer coefficient of the thermosyphon. However, the fraction of heat transfer associated with axial conduction decreased as the heat flux increased. For small heat flux (Tb = 30 °C), the increment of the evaporation and condensation heat transfer coefficient contributed by axial conduction reached 100% and 25%, respectively. For high heat flux (Tb = 60 °C), the increment was negligible (less than 1%).  相似文献   

5.
In the current paper, the performance of an external-fin-assisted thermosyphon is investigated experimentally. The thermosyphon is produced with a copper tube and includes three parts—the evaporator, the adiabatic, and the condenser. The condenser part is enhanced with external longitudinal fins. In this study, different number of fins, filling ratios (FRs), coolant flow rates, a wide range of heat inputs, and initial absolute pressures are considered. The experiments are carried out by measurement of temperature distribution of the thermosyphon's wall and the temperature difference of the coolant. The results depict that increasing the heat input and FR reduces the thermal resistance, while raising the coolant flow rate augments the thermal resistance. Adding external fins to the condenser causes further condensation, which enhances the thermosyphon thermal performance by a reduction of 26.32% in thermal resistance and an increment of 28.55% in the thermosyphon efficiency.  相似文献   

6.
Heat transfer characteristics of spray cooling in a closed loop   总被引:2,自引:0,他引:2  
A closed loop spray cooling test setup is established for the cooling of high heat flux heat sources. Eight miniature nozzles in a multi-nozzle plate are used to generate a spray array targeting at a 1 × 2 cm2 cooling surface. FC-87, FC-72, methanol and water are used as the working fluids. Thermal performance data for the multi-nozzle spray cooling in the confined and closed system are obtained at various operating temperatures, nozzle pressure drops (from 0.69 to 3.10 bar) and heat fluxes. It is exhibited that the spray cooler can reach the critical heat fluxes up to 90 W/cm2 with fluorocarbon fluids and 490 W/cm2 with methanol. For water, the critical heat flux is higher than 500 W/cm2. Air purposely introduced in the spray cooling system with FC-72 fluid has a significant influence on heat transfer characteristics of the spray over the cooling surface.  相似文献   

7.
Filling ratio of the working fluid has a predominant effect on the heat transfer characteristics of a two-phase closed thermosyphon (TPCT). A comprehensive model is developed to investigate the effect of filling ratio on the steady-state heat transfer performance of a vertical TPCT. Three types of flow pattern and two types of transition, according to the distribution of liquid film and liquid pool, are considered in this model, while other models generally focus on only one or two types of them. The total heat transfer rate of liquid pool, including those of natural convection and nucleate boiling, is calculated by combination of their effective areas and heat transfer coefficients. New correlations of the effective area are proposed based on the experimental results from other study. Two different geometries of the TPCT with nitrogen as working fluid are performed experimentally, and the evaporator temperatures accord well with the theoretical calculation. And the calculated results are compared with those by other empirical heat transfer correlations for liquid pool. The range of filling ratio, which can keep a TPCT steady and effective, is proposed based on analysis and comparison. The effects of heat input, operating pressure and geometries of the TPCT on the range are also discussed.  相似文献   

8.
《节能》2016,(9)
对以R32和R245fa为工质的长3m、管内径为40mm、管外径为44mm的重力热管开展了传热性能实验研究。热源为恒温水浴,冷源为固定进口温度和流量的冷水。实验得出了不同热源温度下的热管传热负荷、工质蒸发换热系数和冷凝换热系数,并与经典拟合公式的预测值进行了对比。实验分析对比表明,R32更适宜工作在热源温度为常温到50℃的工况,R245fa更适合工作在50~100℃的热管工况。  相似文献   

9.
A condensation model is developed for a two-phase closed thermosyphon by considering the interfacial shear due to mass transfer and interfacial velocity. The model predictions differ substantially from Nusselt's solutions, showing the significance of the interfacial shear on the condensation inside the thermosyphon. It is found that the condensation heat transfer is greatly affected by two controlling parameters—the relative velocity ratio B and the momentum transfer factor U. The sub-flooding limit, which is different from the conventional flooding limit, is proposed to capture the interaction between the condensation and evaporation in the thermosyphon, based on which the critical aspect ratio (radius/length) can be determined to prevent the thermosyphon from heat transfer deterioration.  相似文献   

10.
11.
Experiments are conducted to investigate the convective heat transfer on a radially rotating heated cylinder. In the experiment, one uses cold air-hot cylinder instead of hot air-cold blade in a real engine. The hollow bakelite test rotating cylinder is pasted with a heater made of 0.03 mm thin film of stainless steel. The maximum air stream velocity is 20 m/s with the corresponding Reynolds number of 1.2 × 105 that is high enough to simulate the real turbine blade of Re ≈ 105. The rotation-induced cross stream flow affect the heat transfer coefficient on the cylinder surface. The effect is more prominent for the cases with higher rotational speeds and lower Reynolds numbers. Due to rotation, the heat transfer enhancement at lower Reynolds number is greater than those at a higher one.  相似文献   

12.
The problem of heat transfer for the motion of a viscous incompressible fluid induced by travelling sinusoidal waves has been analytically investigated for a two-dimensional asymmetrical channel. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The flow is investigated in a wave frame of reference moving with the velocity of the wave. The momentum and energy equations have been linearized under long-wavelength and low-Reynolds number assumptions and closed form expressions for temperature and coefficient of heat transfer have been derived. The effect of Hartmann number, Eckert number, width of the channel and phase angle on temperature and coefficient of heat transfer are discussed numerically and explained graphically.  相似文献   

13.
14.
In this study, comprehensive modeling and simulations were developed and carried out to perform the investigation of the thermal performance of the enclosed thermosiphon through pool boiling in the evaporator sector and the condensation of the liquid film in the condenser part. To simulate these phenomena, the volume of fluid model was utilized. The simulation modeling using the computational fluid dynamics (CFD) technique was validated with existing experimental results, and a good agreement was reached. The simulation results were presented and evaluated in terms of temperature profiles and contours, the volume of fraction contours, and velocity vector distribution. Moreover, the thermal performance (ie, the heat transfer coefficient and thermal resistance) through the thermosiphon operation was analyzed. From the simulation results, it is found that the thermosiphon performance can be improved by the tilt angle and fill ratio. The results indicated that the optimal performance (ie, a high heat transfer coefficient and a low thermal resistance) was attained at a power input of 250 W, tilt angle of 90°, and fill ratio of 0.5. The established CFD simulations effectively predicted the formation of two-phase flow pattern and boiling and condensation zones with water at a low power input, termed as geyser boiling.  相似文献   

15.
Experimental investigation on the heat transfer and friction characteristics of rib-grooved artificial roughness on one broad heated wall of a large aspect ratio duct shows that Nusselt number can be further enhanced beyond that of ribbed duct while keeping the friction factor enhancement low. The experimental investigation encompassed the Reynolds number range from 3000 to 21,000; relative roughness height 0.0181–0.0363; relative roughness pitch 4.5–10.0, and groove position to pitch ratio 0.3–0.7. The effect of important parameters on the heat transfer coefficient and friction factor has been discussed and the results are compared with the results of ribbed and smooth duct under similar flow conditions. The present investigation clearly demonstrates that the heat transfer coefficient for rib-grooved arrangement is higher than that for the transverse ribs, whereas the friction factor is slightly higher for rib-grooved arrangement as compared to that of rectangular transverse ribs of similar rib height and rib spacing. The conditions for best performance have been determined. Correlations for Nusselt number and friction factor have been developed that predict the values within reasonable limits.  相似文献   

16.
A loop filled with a phase changing fluid is proposed as a device capable of transferring heat power from a generation place to a user. Through the solution of a set of non-linear equations, operating conditions of the system are determined. It is seen that even large amounts of energy can be transported under relatively small mass flow rates and differences of pressure and temperature. Then only a small degradation of the energy conveyed takes place. The operating conditions of the system are sensitive to the filling degree and the inner diameter of the loop pipe.  相似文献   

17.
Condensation heat transfer in a closed two‐phase thermosyphon is experimentally examined using two different types of test section. Test Section 1 is a straight‐pipe‐type thermosyphon, whereas Test Section 2 has a large‐diameter evaporator compared with a condenser to minimize entrainment at the evaporator. Condensation heat transfer in Test Section 1 shows much lower heat transfer coefficients than those estimated by a Nusselt theory. This low condensation heat transfer occurs due to a working fluid entrainment. It is confirmed from a result of Test Section 2 that the condensation heat transfer is similar to the values predicted by the Nusselt theory as far as the effect of the working fluid entrainment is negligible and flooding does not occur. A new correlation for the heat transfer coefficient considering the effect of entrainment is proposed. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(3): 212–225, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10030  相似文献   

18.
Heat transfer in a PEMFC flow channel   总被引:2,自引:0,他引:2  
A numerical method was applied to the heat transfer performance in the flow channel for a proton exchange membrane fuel cell (PEMFC) using the finite element method (FEM). The heat transfer enhancement has been analyzed by transversely installing a baffle plate and a rectangular cylinder to manage flow pattern in the flow channel of the fuel cell. Case studies include baffle plates (gap ratios from 00.05 to 0.2) and the rectangular cylinder (width-to-height ratios from 0.66 to 1.66 with a constant gap ratio of 0.2; various gap ratios from 0.05 to 0.3 with a constant width-to-height ratio 1.0) at constant Reynolds number. The results show that the transverse installation of a baffle plate and a rectangular cylinder in the flow channel can effectively enhance the local heat transfer performance of a PEMFC. The installation of a rectangular cylinder has a better effective heat transfer performance than a baffle plate; the larger the width of the cylinder is the better effective heat transfer performance becomes.  相似文献   

19.
Phase-change coatings have been applied to the axial-clearance rotor-stator cavity for the estimation of the transient heat transfer characteristics of the surface of the rotating disc. The tests were conducted for an air mass flow coefficient Cw = 1220, a gap ratio G = 0.1, an axial-clearance ratio Gca = 0.05 and for rotational Reynolds numbers of Re? = 1 × 105 and 2 × 105. The phase-change coating used had a melting point of 38°C. From a video recording of the transient movement of the melt-line on the rotor (coated with the phase-change material) blown with heated air, it was possible to compute the heat transfer coefficients. The data reduction was made using the ‘semi-infinite slab’ approximation to the governing one-dimensional transient heat conduction equation.  相似文献   

20.
An experimental investigation was performed to study the heat transfer characteristics of temperature-dependent-property engine-oil inside shell and coiled tube heat exchangers. For this purpose, a well-instrumented set-up was designed and constructed. Three heat exchangers with different coil pitches were selected as the test section for counter-flow configuration. Engine-oil was circulated inside the inner coiled tube, while coolant water flowed in the shell. All the required parameters like inlet and outlet temperatures of tube-side and shell-side fluids, flow rate of fluids, etc were measured using appropriate instruments. An empirical correlation existed in the previous literature for evaluating the shell-side Nusselt number was invoked to calculate the heat transfer coefficients of the temperature-dependent-property fluid flowing in the tube-side of the heat exchangers. Using the data of the present study, an empirical correlation was developed to predict the heat transfer coefficients of the temperature-dependent-property fluid flowing inside the shell and coiled tube heat exchangers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号