首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wettability is an important phenomenon in the liquid phase sintering of silicon carbide (SiC) ceramics. This work involved a study of the wetting of SiC ceramics by two oxide systems, Al2O3 /Dy2O3 and Al2O3 /Yb2O3, which have so far not been studied for application in the sintering of SiC ceramics. Five mixtures of each system were prepared, with different compositions close to their respective eutectic ones. Samples of the mixtures were pressed into cylindrical specimens, which were placed on a SiC plate and subjected to temperatures above their melting points using a graphite resistance furnace. The behavior of the melted mixtures on the SiC plate was observed by means of an imaging system using a CCD camera and the sessile drop method was employed to determine the contact angle, the parameter that measures the degree of wettability. The results of variation in the contact angle as a function of temperature were plotted in graphic form which showed that the curves displayed a fast decline and good spreading. All the samples of the two systems presented final contact angles of 40° to 10° indicating their good wetting on SiC in the argon atmosphere. The melted/solidified area and interface between SiC and melted/solidified phase were evaluated by scanning electron microscopy (SEM) and their crystalline phases were identified by X-ray diffraction (DRX). The DRX analysis showed that Al2O3 and RE2O3 reacted and formed the Dy3Al5O12 (DyAg) and Yb3Al5O12 (YbAg) phases. The results indicated that the two systems had a promising potential as additives for the sintering of SiC ceramics.  相似文献   

2.
Nd2O3 was used to support Al2O3 and ZnO to prepare a supported solid base catalyst and investigate the effect of catalyst and reaction conditions on the synthesis of tert-butyl acetate. The composited oxide of Nd2O3/Al2O3-Nd2O3/ZnO exhibited excellent catalytic activity for the synthsis of tert-butyl acetate. The molar ratio of tert-butanol to acetic anhydride is 31, the catalyst in total amount of reactant nearly 0.5%, and reaction time 6 h. With the above conditions, yield of the reaction could reach to 65%. The structure of product were verified by the FT-IR, Element analysis, and MS, which proved that the product was tert-butyl acetate.  相似文献   

3.
采用喷射沉积和内氧化法制备出Al2O3La2O3Y2O3/Cu复合材料,研究该材料在直流20 V/20 A的工作条件下触点的电弧侵蚀特性,并与Al2O3/Cu材料进行了对比分析.利用电子天平、扫描电镜等方法分析电弧侵蚀后触点的质量变化和表面微观结构.结果表明,通过添加Y2O3、La2O3稀土氧化物颗粒,可有效降低触头材料的材料转移量.Al2O3La2O3Y2O3/Cu材料的抗熔焊性和抗烧损性优于Al2O3/Cu材料的性能.在直流阻性负载条件下Al2O3La2O3Y2O3/Cu阳极触头表面形成凹坑,阴极触头表面形成凸起,触点表面显示出浆糊状凝固物和喷发坑等电弧侵蚀形貌特征.  相似文献   

4.
The influences of Al2O3/CaO and Na2O/CaO ratios on viscosities of CaO-Al2O3-SiO2-Na2O melts are investigated by the rotating cylinder method in this study. It is indicated from the experimental results that viscosity first increases and then decreases as gradually increasing Na2O/CaO ratio. As increasing Na2O/CaO ratio while keeping the contents of Al2O3 and SiO2 constant, the transformation of bridging oxygen (from being bonded with Al3+ ion charge compensated by Ca2+ ion to that compensated by Na+ ion, for the higher priority of Na+ ion relative to Ca2+ ion) increases the viscosity, whereas the transformation of non-bridging oxygen decreases the viscosity. These two factors lead to the appearance of viscosity maximum. The viscosity model proposed in our previous papers could well describe the viscosity variation tendency.  相似文献   

5.
Ni、Cu-Al2O3纳米金属陶瓷粉末的热压   总被引:5,自引:0,他引:5  
将化学电镀法制备的纳米Ni、Cu包覆Al2O3粉末进行热压。研究了金属Ni、Cu及其含量对Al2O3粉末的烧结致密化、显微组织和性能的影响。在纳米Al2O3粉末表面镀覆适当的金属Ni、Cu可以较有效地提高致密化,降低烧结温度。金属相作为第二相可以大大细化Al2O3晶粒组织。但Ni、Cu的加入伴随着Al2O3硬度和强度下降。硬度变化可以由金属Ni、Cu是软相较好地解释。强度下降则主要归因于包覆粉末中Ni、Cu对Al2O3粉末的润湿性不好所致。  相似文献   

6.
CeO2,La2O3,and CeO2-Y2O3 oxides were coated on the surface of spherical granular AI2O3(3-5 mm)through impregnation method,and proved as better supports of Pd and Pt catalysts.The influences of rare earth metal doping on the adsorption rates of Pd and Pt ions,as well as the catalytic performance,were investigated.Results show that the H2PtCl6·6H2O adsorption rates of the Al  相似文献   

7.
Commercial cathode material (LiCoO2) was modified by coating with a thin layer of SrO/Li2O/La2O3/Ta2O5/TiO2 for improving its performance in lithium ion battery. The morphology and structure of the modified cathode material were characterized by scanning elec-tron microscopy (SEM) and X-ray diffraction (XRD). The performance including cycling stability, diffusion coefficient under different volt-age, C-rate discharge of the batteries with this modified cathode material was examined. The results showed that the battery with the coated cathode material could discharge at a large current density, and it possessed a stable cycle performance in the range from 3.0 V to 4.2 V. It was explained that the rate of Li ion diffusion increased in the batteries using SrO/Li2O/La2O3/Ta2O5/TiO2-coated LiCoO2 as the cathode and the coated layer could act as a fast ion conductor (Sr0.5La0.05Li0.35Ti0.5Ta0.5O3) and as a protecting shell to prevent LiCoO2 particles from be-ing attacked by the acidic electrolyte.  相似文献   

8.
Pressure castings of Ni3Al(IC218)/Al2O3 and Ni/Al2O3 composites, made with continuous DuPont FP α-Al2O3 and DuPont PRD166 α-Al2O3+20 wt pct partially stabilized ZrO2 20 μm diameter fibers, were examined by optical, scanning electron microscope (SEM), and transmission electron microscope (TEM) techniques. According to optical magnifications, excellent infiltration took place. However, in SEM and TEM magnifications, small gaps were found adjacent to regions where bonding had taken place between fibers. On the basis of available evidence, the gap formation was attributed to trapped gases and microshrinkage. Titanium was added to the metal to promote infiltration. Diffusion of Ti into the fibers of the Ni/Al2O3 composites occurred, but similar diffusion into the fibers of the IC218/Al2O3 composites did not take place. The qualitatively higher bond strength of the interfaces of the Ni/Al2O3 composites was ascribed to the diffusion of Ti into Al2O3. No interface reaction layer was found in any of the composites. Very little grain growth was found to take place in either the FP or PRD 166 fibers after casting and after a subsequent ten day anneal at 1150 °C.  相似文献   

9.
The feasibility of Al2O3/FeAl + B and Al2O3/FeCrAlY composites for high-temperature applications was assessed. The major emphasis was on tensile behavior of both the monolithics and composites from 298 to 1100 K. However, the study also included determining the chemical compatibility of the composites, measuring the interfacial shear strengths, and investigating the effect of processing on the strength of the single-crystal A12O3 fibers. The interfacial shear strengths were low for Al2O3/FeAl + B and moderate to high for Al2O3/FeCrAlY. The difference in interfacial bond strengths between the two systems affected the tensile behavior of the composites. The strength of the A12O3 fiber was significantly degraded after composite processing for both composite systems and resulted in poor composite tensile properties. The ultimate tensile strength (UTS) values of the composites could generally be predicted with either rule of mixtures (ROM) calculations or existing models when using the strength of the etched-out fiber. The Al2O3/FeAl + B composite system was determined to be unfeasible due to poor interfacial shear strengths and a large mismatch in coefficient of thermal expansion (CTE). Development of the Al2O3/FeCrAlY system would require an effective diffusion barrier to minimize the fiber strength degradation during processing and elevated temperature service.  相似文献   

10.
11.
本研究采用高温氧化的方法制备出纳米NiAl2O4/Al2O3粉体。在纳米Al2O3粉体表面包覆一层金属Ni,在1350℃高温下焙烧Ni/Al2O3复合粉体得到纳米NiAl204/Al2O3粉体。利用TEM对Ni/Al2O3复合粉体进行观察,发现Ni/Al2O3复合粉体颗粒成球形,大小为50~60nm;通过对Ni/Al2O3复合粉体的DTA析,显示Ni/Al2O3复合粉体在900℃和1300℃下有新相生成,经XRD检测,新相分别为NiO和NiAl2O4。  相似文献   

12.
ZrO2 containing 2% (mol fraction) Y2O3 and 3% (mol fraction) Y2O3 were added into Al2O3 matrix, compositing composites with 15% volume fraction of addictives mentioned above. The testing of property and analysis of SEM presented that, after vacuum sintering at 1550 °C, thermal shock resistance of two composites was superior to Al2O3 ceramic. The experiment showed that the properties of Al2O3 composites was higher than Al2O3 ceramic, and Al2O3/ZrO2(3Y) was higher than Al2O3/ZrO2(2Y) in thermal shock resistance. Improvement of thermal shock resistance of composites was attributed to many toughness machanisms of ZrO2(Y2O3). By calculation, the fracture energy of Al2O3, Al2O3/ZrO2 (2Y) and Al2O3/ZrO2(3Y) was 38100.8 and 126.2 J·m−2, respectively. Cracks initiation resistance (R') of Al2O3/ZrO2(3Y) and Al2O3/ZrO2(2Y) was higher than Al2O3 ceramic by 1.57 and 1.41 time, respectively, and cracks propagation resistance (R″″) was higher than Al2O3 ceramic by 1.46 and 1.38 time, respectively, which was corresponding to the results of residual strength.  相似文献   

13.
14.
Subsolidus ternary phase relationships in the systems FeAlO and CuAlO are reviewed in order to provide a basis for thermodynamic analysis of aluminate formation at Fe/α-Al2O3 and Cu/α-Al2O3 interfaces. Expressions for the critical oxygen activity in the Fe-rich and Cu-rich solid solutions necessary to stabilize the equilibrium aluminate phases (FeAl2O4 and CuAlO2, respectively) in the presence of α-Al2O3 are derived using data available in the literature. As in previous work in the NiαAl2O3 system, aluminate formation by solid state reaction of Fe and Cu with α-Al2O3 was calculated to require a threshold concentration of oxygen in the metal, which is of the order of 1/5 the solubility limit. The sults are presented in stability diagrams and compared with previous results on the Ni/α-Al2O3 system in terms of the free energies of formation of the aluminates and the relative free energes of solution of oxygen in the metals. The results are also compared with available experimental observations on Fe/α-Al2O3 and Cu/α-Al2O3 interfaces.  相似文献   

15.
Effects of Y2O3 on Thermal Shock of Al2O3/TiCN Composites   总被引:3,自引:0,他引:3  
Advancedstructuralceramics ,suchasoxides ,nitridesandcarbides ,havebecomepreferredrefracto rymaterialsforaviation ,spaceflight ,energyandmet allurgybecauseoftheirchemicalstability ,creepresis tanceandhightemperaturestrength .Buttheyareaf fectedgreatlybyte…  相似文献   

16.
利用综合热分析仪研究了O2/N2与O2/CO2气氛下Fe2O3与K2CO3对无烟煤催化燃烧反应性的影响。结果表明,在O2/CO2气氛下,Fe2O3与K2CO3均可以催化无烟煤粉的燃烧,但其催化作用要弱于O2/N2气氛,且在低氧气浓度的O2/CO2气氛下对Fe2O3与K2CO3的抑制作用大于高氧气浓度。氧气浓度为20%~80%时,K2CO3在O2/N2气氛下催化煤粉前期燃烧使燃烧由反应控制转变为扩散控制,Fe2O3则只在氧气浓度为20%时能改变煤粉前期燃烧的控制步骤;而Fe2O3与K2CO3在O2/CO2气氛下均只能在氧气浓度为20%时改变煤粉前期燃烧的控制步骤,由反应控制转变为扩散控制。  相似文献   

17.
A tritium permeation barrier is required in fusion blankets for the reduction of fuel loss and radiological hazard. In this study, an Al2O3/Y2O3 composite coating was prepared on 316L stainless steel by radio-frequency magnetron sputtering in order to improve the tritium permeation resistance. The microstructure and the phase composition of the Al2O3/Y2O3 composite coating are observed by scanning electron microscopy, transmission electron microscopy and grazing incidence X-ray diffraction. Moreover, Auger electron spectroscopy was used to characterize the depth profiles of Al, Y and O elements. The results clearly indicate that the Al2O3/Y2O3 composite coating is fully dense and the total thickness is approximately 340 nm. The Al2O3/Y2O3 coating consists of an amorphous Al2O3 and the cubic Y2O3, in which Al, Y and O elements are homogeneously distributed in the vertical base direction. Furthermore, the deuterium permeation property of the Al2O3/Y2O3 composite coating was measured by the gas phase permeation method. The results show that the introduction of an interface and the existence of a tiny amount of micro-defects improve the deuterium resistance of the Al2O3/Y2O3 coating, and its deuterium permeation reduction factor is 536–750 at 873–973 K. Therefore, it is concluded that the Al2O3/Y2O3 composite coating as deuterium permeation barrier can significantly enhance the deuterium permeation resistance property.  相似文献   

18.
在不同粒度的Al2O3微粉基体中加入SiO2纳米粉,通过特殊的粉体分散及热压铸方法制备出Al2O3/SiO2纳米复合陶瓷型芯.研究了物料组成对Al2O3/SiO2纳米复合陶瓷型芯烧制特性的影响.结果表明加入SiO2纳米粉后,改善了材料的流动性,并使陶瓷型芯的抗弯强度提高,烧结温度降低;在不同物料组成的纳米复合陶瓷型芯中,粗细物料搭配的基体其抗弯强度较高,并得到了最佳的物料组成及烧结制度.  相似文献   

19.
基于国外定向凝固氧化物/氧化物共晶复合陶瓷的晶体生长动力学行为的研究成果,阐述其动力学机制,分析动力学因素对微观结构形态的影响,探讨晶体生长热力学、动力学行为与微观结构形态之间的关系,同时结合以燃烧合成、快速凝固技术制备的新型高强韧Al2O3/ZrO2(Y2O3)共晶复合陶瓷,探讨共晶复合陶瓷在快速凝固条件下的晶体生长动力学行为.结合定向凝固与快速凝固两种晶体生长机制,得知过冷度、凝固界面前沿的温度梯度是影响晶体生长方式的重要因素,且受二者决定的凝固速率(即晶体生长速率)则决定材料的最终微观结构与形态.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号