首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 896 毫秒
1.
本文研究单向短纤维增强金属基复合材料的细现弹塑性变形和宏观弹塑性响应。假设纤维是弹性体,基体是弹性粘塑性体。利用有限元法分析了复合材料可周期性重复的单胞的细观弹塑性应力场;利用体积平均的均匀化方法研究了复合材料的弹塑性应力-应变关系。本工作着重分析复合材料中纤维与纤维、纤维与周围基体的相互作用机理。  相似文献   

2.
单向复合材料弹塑性变形行为的研究   总被引:1,自引:0,他引:1  
本文利用微观力学方法研究了单向连续纤维增强的金属基复合材料的弹塑性变形行为。纤维是线弹性材料,基体是弹性一粘塑性各向同性材料。在复合材料的纵向拉伸、横向拉伸和纵向剪切变形状态下,预测了复合材料的弹性模量和初始屈服应力值,并考虑了应变率对弹塑性变形行为的影响。以硼/铝复合材料为例,进行了数值分析,预测结果与实验值符合较好。   相似文献   

3.
基于三单胞模型,分别采用刚度平均化理论和数值分析方法对编织角为20°,30°,45°的三维四向编织复合材料的弹性常数及其随编织角变化规律进行预测,并在MTS试验机上开展了静态拉伸实验。结合理论分析、数值仿真与实验测试结果,发现随着编织角的增大,纤维束的刚度在纵向分量减小,而在横向分量增加,因此三维四向编织复合材料纵向刚度逐渐减小,横向刚度和横向剪切刚度逐渐增大。实验结果还发现不同编织角的复合材料纵向拉伸曲线具有较大差异,20°编织角实验件呈现线弹性,30°编织角实验件呈现非线性,45°实验件呈现双线性;而三种编织角的实验件的横向拉伸力学行为基本呈线性。通过与实验件纵横向拉伸实验结果对比,发现刚度平均化方法和数值模拟方法对三维编织复合材料编织方向刚度预测较为准确,但由于忽略了纤维与基体脱胶现象,对横向刚度预测偏差较大。  相似文献   

4.
三维四向编织复合材料有效性能的预报   总被引:4,自引:4,他引:0       下载免费PDF全文
根据三维四向编织复合材料中纤维束的空间几何结构特征, 建立了比较合理的三胞模型。模型中考虑了3种单胞各自纤维束的空间结构和弯曲, 同时引入纤维束填充因子来描述各类单胞中纤维束的不同截面形状对材料弹性常数的影响。基于刚度体平均方法, 建立了相应的刚度预报模型, 得到了三维四向编织复合材料的工程弹性常数。用细观力学方法分析了工艺参数和尺寸效应对材料有效性能的影响规律。不同尺寸试件的数值预报结果和实验结果吻合较好。   相似文献   

5.
三维四向编织复合材料的几何建模及刚度预报   总被引:9,自引:9,他引:0       下载免费PDF全文
提出了四步法三维四向矩形编织复合材料的单胞几何模型, 该模型考虑了空间纤维束的相互扭结和挤压而造成的纤维束弯曲和截面形状变化。基于刚度体积平均思想, 采用微元段直纤维的单向层板刚度分析方法建立了相应的刚度预报模型, 得到了材料的工程弹性常数, 数值结果表明了该模型的有效性;分析了工艺参数和纤维束横截面形状对弹性常数的影响规律, 得到了一些有益结论。  相似文献   

6.
在已有研究的基础上,提出了一个新的2.5D机织复合材料有限元模型,该模型较为真实的模拟了织物内纤维束的轮廓结构和走向,模型中纤维束单元的材料属性根据其所处位置及纱线走向的不同对其分别进行定义。利用该模型,以机织结构和纤维束排列密度为参数,详细研究了其对2.5维机织复合材料弹性性能的影响情况,并对其影响特征进行了分析讨论。将计算结果与实验值和刚度平均法预测结果进行了对比分析。结果表明,有限元法预测结果介于实验值和刚度平均法预测值之间,非常接近于实验值,且优于刚度平均法预测的结果。  相似文献   

7.
樊卓志  温树文  张鹏  张书彦 《材料导报》2018,32(Z2):560-564
本文对纤维增强复合材料的本构模型最新研究成果进行简要阐述和归纳,并结合实例进行了相关数值模拟计算。文中阐述的复合材料为纤维增强树脂复合材料、纤维增强金属基复合材料和纤维编织复合材料。目前,关于纤维增强金属基复合材料的研究较少,大多数研究集中在纤维增强树脂复合材料和纤维编织复合材料。许多学者在经典弹性本构模型和连续介质力学基础上,推导出了一些弹塑性、粘弹性和考虑损伤的非线性本构模型。通过实例计算结果表明,考虑损伤导致刚度退化的复合材料弹塑性本构模型计算得到的拉伸应力应变曲线与测试结果基本一致。本文通过对复合材料本构模型的最新研究成果的归纳和数值模拟实例计算,为后续研究工作提供借鉴,推动其在实际工程中的应用。  相似文献   

8.
基于均匀应变假设和界面连续性条件,并考虑到编织向纤维束波动周期在特定区域沿着自身横向的渐变,建立了一种分析三向编织复合材料弹性性能的理论预测方法.对比理论分析和实验研究结果,验证了理论预测方法的正确性.参数研究表明:在同一纤维体积分数条件下,随着编织角的增大,纵向弹性模量逐渐减小而横向弹性模量逐渐增大,面内剪切弹性模量和泊松比先增大后减小(分别在约50°和35°时达到最大值);随着轴向纤维束与编织向纤维束大小之比的增大,纵向弹性模量逐渐增大,而横向弹性模量、面内剪切弹性模量和泊松比逐渐减小.  相似文献   

9.
经向纤维束与纬向纤维束纵横交错引起的纤维弯曲(也称为波纹)是平纹机织复合材料固有特征。首先,提出了一种精确描述平纹机织复合材料单胞3D结构特征的数学表达式。其次,基于经典层合板理论和等应力假设,考虑平纹机织复合材料厚度方向非对称引起的弯曲-拉伸耦合效应及单胞结构特征,建立了含结构参数的平纹机织复合材料等效弹性性能多参数解析模型。通过数个典型算例验证了建立的多参数解析模型,结果表明:该多参数解析模型预测值与相关文献中有限元模型预测值、解析模型预测值、实验值等均吻合较好;该多参数解析模型预测值尤其是Z向弹性性能预测值,比文献中解析模型预测值更接近于实验值。在此基础上,进一步探讨了纤维束波纹比(包括纤维束波动方向波纹比与纤维束横截面波纹比)、经向与纬向纤维束构成的预成形体厚度、纤维束中弯曲部分的长度、相邻纤维束之间间距等结构参数对平纹机织复合材料弹性性能影响。该多参数解析模型建模方法为研究纺织复合材料力学性能提供了参考。  相似文献   

10.
跨尺度预测非屈曲织物增强复合材料的刚度和强度   总被引:1,自引:0,他引:1       下载免费PDF全文
为了预测非屈曲织物增强复合材料的力学性能, 建立了纤维束的正六边形单胞和非屈曲织物复合材料的长方形单胞, 并重点推导了正六边单胞的方程边界条件。通过跨尺度逐级计算这两个单胞的有效弹性常数, 得到了非屈曲碳纤维织物增强环氧树脂基复合材料的宏观有效弹性性能和强度。对该非屈曲织物复合材料在拉伸载荷下的累计失效进行了有限元损伤分析。结果表明: 初始损伤发生在富树脂区或横向纤维束, 损伤在富树脂区与横向纤维束内逐步扩展, 最后向纵向纤维束扩展并迅速导致整体失效; 非屈曲织物增强复合材料的面内拉伸模量的计算预测值非常接近实验值, 面内拉伸强度计算值略小于实验值。  相似文献   

11.
应变率对T300/Al(L2)复合丝拉伸性能的影响   总被引:1,自引:1,他引:0  
利用MTS810试验机和自行研制的冲击拉伸试验装置对T300/Al复合丝实施了不同应变率下的拉伸试验,获得了材料从0.001s^-1到1300s^-1应变率范围内完整的应力应变曲线。结果表明:T300/Al是一种应变率敏感复合材料,随着应变率的提高,材料的拉伸强度、失稳应变均相应提高,具有明显的应变率强化效应和动态韧性现象,这主要是由铝基体的应变率强化效应和应变率历史效应引起的。根据材料在不同应变率下的试验结果以及对其不同变形阶段机理的分析,提出了弹塑性复合丝束模型,并由此建立了相应的应变率相关的一维统计损伤本构方程,模型拟合结果与试验结果一致。  相似文献   

12.
Proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step to determine the bulk properties of the composite. This paper reports a meso-structure model of multi-axial multi-layer warp-knitted (MMWK) composites from an elastic–plastic material model considering the strain rate effect for the components of the MMWK composite. The representative unit cell (RUC) of fiber tow is created to obtain the elastic–plastic parameters of the fiber tow. The 3D meso-structure model of the MMWK composite is based on an idealized geometrical model according to the preform structure of the MMWK fabric. The model is used to investigate the effect of the volume fraction of the knitting yarn on the dynamic in-plane compressive properties. The results show that the fiber tow failure at large extent is mainly caused by the micro cracking of the matrix, and the effects of the knitting yarn on the mechanical properties of MMWK composite are very limited. Particularly, MMWK composites could be considered as laminates when the volume fraction of the knitting yarn is low, such as below 1.5%. Experiments were also conducted to validate the results from the simplified meso-structure model of the MMWK composite. The material is found to be strain rate sensitive, and the experimental and predicted results agree well with respect to the compressive strength and modulus of the composite. This confirms that the meso-structure MMWK composite model proposed is capable of capturing the essential features for the response of the composite under different strain rate conditions at the meso-level.  相似文献   

13.
Within the framework of continuum plasticity theory, a numerical analysis in this investigation is made of the role of microstructures of fibrous composites against transverse plastic flow by means of the finite element method (FEM). In this way, the effective mechanical properties can be related quantitatively to the micro structures of composites reinforced by randomly arranged fibers. The effects of different cross-sectional geometry, such as the fiber shape (circular, square and lozenge), size, and random fiber distribution on the transverse elastic and plastic deformation of the metal-matrix composites with specific randomly distributed, aligned continuous fibers, are examined. Numerical results show that the overall transverse plastic flow of the composites is rather sensitive to the fiber geometric parameters while the elastic properties exhibit a much lower sensitivity to the fiber distribution. The interference of fibers with flow paths is seen from stress contours analysis to play an important role in the transverse strengthening due to the constraint imposed by the reinforcements. The calculations of the alterations in matrix field quantities in response to controlled changes in the random fiber distribution give valuable insights into the effects of fiber clustering on the transverse tensile properties.  相似文献   

14.
为提高碳纤维/环氧树脂复合材料的刚性和热尺寸稳定性,首先利用短切碳纤维制备了碳纤维网络增强体(CFNR),并将其与环氧树脂复合制备了CFNR/环氧树脂新型复合材料。然后,分别利用扫描电镜和热机械分析仪对CFNR/环氧树脂复合材料的微观结构和热力学性能进行了表征。结果表明:CFNR/环氧树脂复合材料中有明显的网络节点,即碳质粘结点;CFNR/环氧树脂复合材料具有较好的导电性、较高的刚性和较低的热膨胀性,其弹性模量分别为常规短切碳纤维/环氧树脂复合材料及纯环氧树脂的3倍和6倍,平均热膨胀系数(60~200℃)分别为常规短切碳纤维/环氧树脂复合材料的1/15及纯环氧树脂的1/40;随着温度升高,CFNR/环氧树脂复合材料、常规短切碳纤维/环氧树脂复合材料及纯环氧树脂的弹性模量均因环氧树脂变软而降低,当温度高于80℃时,CFNR/环氧树脂复合材料的弹性模量分别约为常规短切碳纤维/环氧树脂复合材料的7倍和纯环氧树脂的近70倍。研究结论可以为开发高刚性、低膨胀聚合物基复合材料提供实验依据和理论指导。  相似文献   

15.
Premature failure due to low mechanical properties in the transverse direction to the fiber constitutes a fundamental weakness of fiber reinforced polymeric composites. A solution to this problem is being addressed through the creation of nanoreinforced laminated composites where carbon nanotubes are grown on the surface of fiber filaments to improve the matrix-dominated composite properties. The carbon nanotubes increase the effective diameter of the fiber and provide a larger interface area for the polymeric matrix to wet the fiber. A study was conducted to numerically predict the elastic properties of the nanoreinforced composites. A multiscale modeling approach and the Finite Element Method were used to evaluate the effective mechanical properties of the nanoreinforced laminated composite. The cohesive zone approach was used to model the interface between the nanotubes and the polymer matrix. The elastic properties of the nanoreinforced laminated composites including the elastic moduli, the shear modulus, and the Poisson’s ratios were predicted and correlated with iso-strain and iso-stress models. An experimental program was also conducted to determine the elastic moduli of the nanoreinforced laminated composite and correlate them with the numerical values.  相似文献   

16.
Ultra-high molecular weight polyethylene (UHMWPE) fibers have good mechanical and physical properties and effective radiation shielding functions, which are significant for aerospace structures. In our previous work, nano-epoxy matrices were developed based on addition of reactive graphitic nanofibers (r-GNFs) in a diluent to form a blend. It is found that improved wettability and enhanced adhesion of the matrices to UHMWPE fibers can be obtained. In this study, a series of nano-epoxy matrices with different concentrations of r-GNFs (up to 0.8 wt%) and different weight ratios of r-GNFs to a reactive diluent (1:4, 1:6, 1:7, and 1:9) were prepared. Composite bundle specimens of UHMWPE fiber/nano-epoxy were fabricated and their tensile behavior was investigated. All load-displacement curves of the UHMWPE/nano-matrix bundle composites under tensile loading showed three regions corresponding to the three deformation and failure stages of the materials: 1) elastic deformation stage, 2) plateau stage, and 3) UHMWPE fiber failure stage. The nano-epoxy with 0.3 wt% of r-GNFs and with 1:6 ratio of r-GNFs to the diluent proved to be the best matrix for UHMWPE fiber composites with enhanced tensile properties. For the resulting composite, the load level and consumed energy in the plateau stage were increased by 8% and 30% over the UHMWPE fiber/pure-epoxy specimens, respectively. This UHMWPE fiber composite with the optimized nano-epoxy matrix also possesses the highest initial stiffness and ultimate tensile strength among all the resulting UHMWPE fiber composites. These results laid a foundation for us to fabricate UHMWPE fiber reinforced composite laminates in the near future.  相似文献   

17.
为利用玻璃纤维提高木塑复合材料的综合性能,探讨玻璃纤维含量对竹粉/高密度聚乙烯(HDPE)复合材料性能的影响规律,首先,采用A-171硅烷偶联剂对竹粉表面进行了改性,并加入了一定量的玻璃纤维;然后,采用热压成型工艺制备了玻璃纤维-竹粉/HDPE复合材料;最后,考察了玻璃纤维含量对复合材料力学性能、热学性能及摩擦学性能的影响,并利用SEM观察材料的断面和磨损表面形貌。结果表明:当玻璃纤维含量为3wt%时,能显著提高竹粉/HDPE复合材料的拉伸强度和弯曲强度,与未添加玻璃纤维的复合材料相比,添加玻璃纤维后复合材料的拉伸强度和弯曲强度分别提高了19.41%和23.54%;在30~60℃温度范围内,复合材料长度-宽度方向上的线膨胀系数随着玻璃纤维含量的增加而明显减小,而同一复合材料的线膨胀系数随温度的升高而逐步增大;在氮气气氛下,随玻璃纤维含量的增加,竹粉/HDPE复合材料的摩擦系数先逐渐增大,而后基本保持不变,磨损率逐渐减小。所得结论显示玻璃纤维含量为3wt%~7wt%的木塑产品适用于建筑横梁(如凉亭或桥梁等),而玻璃纤维含量为7wt%~10wt%的木塑产品适用于高人流量场所(如公园或休闲绿道等)的地面铺装。   相似文献   

18.
The effect of different fiber arrangements on mechanical behavior was investigated by using both experimental study and finite elements analyses. In particular, this study examined resultant residual stresses and plastic strains of steel-fiber reinforced thermoplastic composite discs under constant convective air cooling conditions. Three composite discs were manufactured with an identical concentration of woven, circular and radial arrays. The thermal and mechanical properties of the composite discs were measured. The numerical and experimental cooling curves were converged to correctly describe the convective cooling condition of the finite element analyses. After the cooling, the residual stresses and plastic strains in each disc were compared with one another and the results were analyzed. No thermal residual stress or plastic strain was observed for the woven fiber array. Residual stress and plastic strain found in the circular fiber array was twice as high as those in the radial fiber array. It is concluded that the reinforcement fiber array of thermoplastic composites is an effective parameter to describe their thermo-mechanical properties for the formation of thermal residual stresses and plastic deformation.  相似文献   

19.
将连续碳纤维束用空气梳分散成单丝状的长带, 经60 %硝酸进行表面氧化处理后用作酚醛树脂复合材料的增强材料。用红外光谱、扫描电镜等表征复合材料的微观结构, 通过力学性能测定发现, 与连续的碳纤维束增强相比, 单丝带增强复合材料的弯曲强度提高了1 倍, 层间剪切强度( ILSS) 提高了2 倍, 但冲击强度有所降低。结果表明, 碳纤维经过表面氧化和丝束分散的处理后, 能有效地提高其与复合材料中树脂基体的结合性能。   相似文献   

20.
陶瓷纤维增强氧化硅气凝胶复合材料力学性能试验   总被引:5,自引:0,他引:5       下载免费PDF全文
氧化硅气凝胶具有极低的热导率和密度,可作为很好的隔热材料,而脆弱的力学性能限制了其在隔热领域的应用。在不影响隔热效果的前提下,通过复合陶瓷纤维可增加氧化硅气凝胶的强度及韧性。试验探索了陶瓷纤维增强氧化硅气凝胶在室温下的拉伸、压缩和剪切等基本力学性能,分别研究了300℃、600℃和900℃下复合材料纤维铺层面方向的压缩性能,并采用扫描电子显微镜对高温试样微观结构进行了观察分析。结果表明:陶瓷纤维增强氧化硅气凝胶的性能表现出方向性,弹性模量在铺层面内方向与厚度方向的数值最大相差约28倍,强度极限亦然;在室温条件下,复合材料的拉伸和压缩弹性模量不同,X 、Y 和 Z 方向拉伸模量与对应的压缩模量之比分别为1.60、1.83和0.56;高温下复合材料沿厚度方向收缩,收缩量随温度升高而增大,900℃下的最大收缩量可达10.8%;高温下复合材料铺层面内方向压缩性能随温度升高而增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号