共查询到20条相似文献,搜索用时 15 毫秒
1.
提出一种基于快速相关性约简和近邻传播聚类的卷积记忆网络短期风速预测模型。计算各风速序列及其属性序列的相关程度信息熵,运用快速相关性滤波算法进行属性约简,以降低属性维度及删除冗余属性;针对风速属性矩阵样本,采用压缩-激励模块(squeeze-and-excitation networks,SENet)构建属性表征序列,以该序列间距为样本相似度,利用近邻传播聚类实现样本集优选重构;构建卷积记忆网络,利用其挖掘深层特征及短期预测。通过对实际风场风速进行预测,对比实测数据,结果表明,该方法在风速属性数据的优选方面具有较大优势,通过保留关联紧密的属性信息,提高了预测精度。 相似文献
2.
3.
较高精度的超短期风速预测是并网运行风电场风电功率预测预报系统建立和运行的必要前提及保证。由于风速影响因素众多,具有较大的波动性和随机性,并具有高度的自相关性,给传统的风速预测方法带来了极大的挑战。提出一种基于谱聚类和极端学习机的超短期风速预测方法。该方法首先利用小波变换和主成分分析对风速数据进行去噪和降维处理,剔除数据的不规则波动,有效降低数据维度;然后分别应用谱聚类对小波变换后的各分解序列进行聚类分析,减少训练样本空间,提高样本有效性,降低计算复杂度;再应用极端学习机对各分解序列分别进行训练,同时通过遗传算法对极端学习机输入权值、偏置等参数进行优化,确保各分解序列输出最佳预测模型;最后将各分解序列预测结果相加得到最终预测结果。以某风电场实际数据进行的建模结果表明该模型有效实现了对风速的超短期、多步预测,采用的方法合理有效。 相似文献
4.
基于FCM聚类与SVM的电力系统短期负荷预测 总被引:6,自引:0,他引:6
分析了模糊C均值(FCM)聚类算法,介绍了支持向量机(SVM)回归的基本原理,提出了一种将FCM聚类算法和SVM结合使用的电力系统短期负荷预测方法。该方法考虑到电力负荷变化周期性的特点,通过对学习样本的聚类,选用同类特征数据作为模型的预测输入,然后对各个模型的输入数据进行归一化处理和分类识别,得出最后总的预测输出。此预测方法保证了数据特征的一致性以及算法的全局性,避免了算法陷入局部极小的缺陷。经过仿真实验,证明了该方法的有效性。 相似文献
5.
基于模糊粗糙集与改进聚类的神经网络风速预测 总被引:3,自引:0,他引:3
提高风电功率预测精度是保障风电场和电力系统安全稳定运行的有效手段。神经网络方法已在风电功率预测中得到了广泛应用,并取得了不错的效果,而网络的输入变量与训练样本对其预测性能有着重要影响。基于此,提出一种基于模糊粗糙集与改进聚类的神经网络风速预测方法。采用模糊粗糙集对影响风电场风速的多种因素进行了属性约简,得到优化了的模型输入及各属性对风速的重要性;采用基于属性重要性的加权欧氏距离对传统聚类进行改进,建立了各聚类预测模型,并提取相似性较高的数据作为训练样本训练各类预测模型,对训练样本实现了优选;根据当前属性值选择匹配的模型对风速进行预测。以华北地区某风电场实际数据为例进行了实验,结果表明该方法能在较少的模型输入下有效地提高预测精度。 相似文献
6.
7.
针对FCM聚类、GA-FCM聚类以及PSO-FCM聚类在进行变压器故障诊断时的不足,采用了GA与PSO混合优化FCM(GAPSO-FCM)聚类来进行故障诊断.GAPSO-FCM聚类进行的是全局搜索,克服了FCM聚类容易陷入局部极小值的问题.GAPSO-FCM聚类是以全局最优个体将GA聚类与PSO聚类有机地联系在一起,G... 相似文献
8.
基于GA与PSO混合优化FCM聚类的变压器故障诊断 总被引:1,自引:0,他引:1
针对FCM聚类、GA-FCM聚类以及PSO-FCM聚类在进行变压器故障诊断时的不足,采用了GA与PSO混合优化FCM(GAPSO-FCM)聚类来进行故障诊断.GAPSO-FCM聚类进行的是全局搜索,克服了FCM聚类容易陷入局部极小值的问题.GAPSO-FCM聚类是以全局最优个体将GA聚类与PSO聚类有机地联系在一起,GA与PSO共用一个最优个体,迭代过程中既包括了GA运算也包括了PSO运算.它依据GA的随机性扩大了搜索范围,之后在所找到的个体附近依据PSO进行更细致的搜索,克服了仅基于单一GA或PSO优化的FCM聚类的早熟问题.通过仿真与实例分析,表明采用GAPSO-FCM聚类进行故障诊断的正确率比采用其他三种聚类的正确率高. 相似文献
9.
为改善FCM算法的运算性能、获得和原FCM算法等价的分类结果,本文提出了基于加权样本的fFCM(fast FCM)算法。此算法首先构造原待聚类集合的权集,并在权集上应用改进的FCM算法——WFCM(weighted FCM)算法快速获得和原FCM算法近似的分割结果;然后,将得到的分割结果作为FCM算法的初值再次利用FCM算法以获得最终的分割结果。理论证明和相关实验表明,fFCM不仅能获得和原FCM算法等价的分类结果,还具有良好的运算性能,具有广泛的适用性。 相似文献
10.
准确的风速预测是提高风功率预测精度的重要保障。为此,提出一种基于互信息(mutual information,MI)属性约简与加权最优层次聚类(weighting optimal hierarchy clustering,WOHC)的离群鲁棒极限学习机(outlier robust extreme learning machine,ORELM)风速混合预测方法。首先,计算32维风速属性特征与风速时间序列间的MI,分析不同特征与风速的相关性。在此基础上,分别采用最大相关最小冗余(maximum correlation minimum redundancy,MRMR)算法和WOHC算法实现风速属性特征的约简及风速样本数据的聚类划分,并通过最优化聚类预处理(clusters optimization on preprocessing stage,COPS)确定最优聚类数。然后,采用ORELM对不同样本集分别进行训练,构建ORELM风速混合预测模型。计算待预测点约简后的属性特征与每个聚类中心的欧式距离,选择匹配的ORELM模型进行风速预测。最后,结合东北某风电场实测数据对所提预测方法的有效性和... 相似文献
11.
为了提高风电场风速短期预测的精确性,提出了基于粒子群算法优化最小二乘支持向量机的预测方法。首先求出风速时间序列的嵌入维数和延迟时间,进而对混沌风速时间序列进行相空间重构。利用粒子群算法对最小二乘支持向量机进行参数优化,然后利用优化后的最小二乘支持向量机模型对相空间重构后的风速时间序列进行预测,预测结果表明基于粒子群优化的最小二乘支持向量机的预测效果满足了精度要求。同时运用了支持向量机和BP神经网络模型进行预测,仿真结果表明,基于粒子群优化的最小二乘支持向量机预测方法具有预测精度高,预测速度快的优点,因此具有很高的工程实际应用意义。 相似文献
12.
针对电网数据提取中存在负荷特征不够显化导致负荷聚类精准度降低的问题,提出基于变分模态分解(variational mode decomposition,VMD)和模糊C均值聚类(fuzzy C-means,FCM)的电网负荷特征分类方法。利用VMD提取负荷特征,将负荷曲线转化为多个本征模态函数(IMF)曲线,并通过数据重构得到特征显化的合成曲线,以此提高FCM聚类函数收敛速度和聚类精准度。同时分析不同聚类中心数与本征模态数下的聚类指标结果,为选取最优的本征模态数提供参考。最后以某市电网夜间负荷数据为例,文中所提方法与传统FCM方法相比,聚类指标最多减小0.0224,提高了聚类精准度。 相似文献
13.
14.
15.
火电机组广泛参与调峰导致运行工况频繁变动,使得锅炉出口NOx排放的控制难度增大。 基于对燃烧状态的影响将锅炉运行参数分为可调参数和不可调参数,并利用不可调参数分布将运行数据样本进行模糊均值聚类划分,以此实现锅炉出口NOx排放特性的多模型预测。同时,利用粒子群算法对各工况所属子模型的可调参数进行寻优来实现NOx排放的优化。对某1 000 MW燃煤机组数据仿真表明,提出的NOx排放多模型预测方法比单一模型具有更好的精度,且模型训练时间更短,经过粒子群算法参数优化后NOx排放质量浓度降低了9.98%。 相似文献
16.
17.
提出了一种最优FCM聚类分析和最小二乘支持向量机回归算法(LSSVR)相结合的电力系统短期负荷预测方法.在考虑电力系统负荷日周期性的基础上,运用基于改进划分系数最大原则的最优FCM聚类分析获取历史负荷样本的最优数据模式划分,并根据输入样本相似度选取LSSVR训练样本.既强化了训练样本的数据规律,又保证了数据特征的一致性,从而提高了LSSVR训练速度,改善了预测效果.仿真实验表明:LSSVR点模型的平均预测精度约98%,而本文模型的平均预测精度达到了98.7%,证明了该方法的有效性和实用性. 相似文献
18.
为了实现短期风速的精准预测,提出了一种基于秃鹰搜索算法优化长短时记忆神经网络的短期风速预测方法。将风速、风向、温度和气压作为特征量,采用秃鹰搜索(bald eagle search,BES)算法对长短时记忆神经网络(long short term memory,LSTM)的隐含层单元数量、正则化系数和初始学习率三个超参数进行优化,建立基于BES-LSTM的短期风速预测模型。采用实际风电场相关数据进行仿真分析,并与其他风速预测方法进行对比,结果表明,本文所提BES-LSTM模型预测结果的方均根误差、平均相对误差和可决系数分别为0.182、3.742%和0.992,各项指标均优于PSO-LSSVM模型和SSA-ELM模型,短期风速预测效果更好。 相似文献
19.
20.
《电气应用》2017,(16)
针对配电网线路数目多、各条线路包含大量的节点和元件、网络结构复杂、监测数据不完善,逐一计算线损工作量大、耗时长的现状,提出了一种基于FCM聚类和BP神经网络的配电网线损的实用计算方法。首先,建立涵盖线路属性和运行特性的线损特征指标体系;然后,选取已知线损和线损特征指标的配电线路构成样本集,并采用FCM聚类算法对样本进行分类,并得到每一类样本的线损特征指标和线损的范围及基准值;接着,对于每一类样本,利用BP神经网络拟合出线损特征指标偏差量与线损偏差量间复杂的非线性关系,建立配电网线损修正模型;该模型在计算未知线路的损耗时,只需确定线路所属的样本类别,并根据线路的线损特征指标偏差量修正线损偏差量,即可获得比较准确的线损计算值,上述算法可对大量的配电网线路进行有效的线损计算;最后,以某地区配电网线路的数据为例,验证了该方法的有效性和实用性。 相似文献