首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电化学超级电容器研究进展   总被引:9,自引:8,他引:9  
张娜  张宝宏 《电池》2003,33(5):330-332
电化学超级电容器是近年来发展的一种新型能量储存装置。根据储能原理有双电层电容器和法拉第准电容器两种类型。介绍了其原理、应用及研究进展,并阐述了以碳材料、金属氧化物和导电聚合物为电极材料的电化学超级电容器以及混合类型电容器的基本情况。  相似文献   

2.
导电聚合物材料在电化学器件中的应用及发展   总被引:1,自引:0,他引:1  
蔡志江 《电源技术》2006,30(1):74-78
综述了导电聚合物材料在电化学器件、电化学超级电容器及二次电池领域中的应用及发展,着重介绍了在各种二次电池体系中导电聚合物材料的应用及研究,并提出了一种新型的完全以导电聚合物材料为电极活性材料的聚合物氢离子电池体系。  相似文献   

3.
石墨烯基电极材料由于其优越的电化学性能,在超级电容器电极材料具有广阔的应用前景。介绍了石墨烯作为超级电容器电极材料的优缺点,重点对近几年石墨烯、石墨烯/碳、石墨烯/金属氧化物、石墨烯/导电聚合物等几类石墨烯基超级电容器电极材料的研究进展进行了综述;最后,对超级电容器用石墨烯基电极材料的研究前景进行了展望。  相似文献   

4.
超级电容器电极材料研究   总被引:18,自引:8,他引:10  
汪形艳  王先友  黄伟国 《电池》2004,34(3):192-193
超级电容器是介于传统电容器和蓄电池之间的贮能元件。介绍了超级电容器的性能优点、工作原理、应用前景 ,并详细综述了碳素材料、过渡金属氧化物、导电聚合物 3类超级电容器电极材料的研究进展  相似文献   

5.
纳米TiO2掺杂活性炭极化电极的电化学特性研究   总被引:1,自引:0,他引:1  
文章研究了纳米TiO2掺杂活性炭(AC)复合物ACT(纳米TiO2掺杂活性炭的AC电极样品)作为超级电容器电极的电化学特性。实验结果表明, 对于具有n型半导体特性的TiO2掺杂AC,作为超级电容器正极材料时能够显著提高AC的储能能力,作为负极时却大大地降低了AC的储能能力。在超级电容器ACT电极中AC∶TiO2为6∶1时,其电极的比容量达到69.4 F·g-1,比纯AC电极的容量提高了约47 %。循环伏安扫描图表明该ACT电极的电化学行为依然为典型的双电层电容特性。掺杂前在350~750 ℃温度范围对纳米TiO2 进行处理有利于进一步提高ACT电极的储能容量。  相似文献   

6.
高比能量电化学电容器及材料的进展   总被引:4,自引:1,他引:3  
介绍了电化学电容器电极材料中高比电容材料的研究进展,包括RuO2基材料、过渡金属氧化物基材料和导电聚合物。总结了最近提出的碳纳米管阵列电容器、嵌入化合物电容器及纳米门炭电容器等高比能量电化学电容器,结合它们的研究现状,分析了高比能量电化学电容器及材料的发展趋势。  相似文献   

7.
赝电容是超级电容器的分支,是一种利用电极材料表面及近表面的可逆氧化还原反应来储能的装置,具有高的比功率和能量密度。综述了赝电容电极材料的储能机制和电化学特性,并重点介绍了赝电容电极材料在超级电容器领域研究的最新进展。  相似文献   

8.
高储能密度聚合物基复合电介质材料在电容器领域具有很高的应用价值,目前很多研究集中在本身具有较高的介电常数的铁电材料上。通过探讨铁电聚合物基纳米复合电介质材料储能理论、电极化特性、充放电效率等与储能密度密切相关的性能,深入分析了复合电介质材料的储能机理并提出了下一步的发展方向。并进一步讨论了目前铁电聚合物基复合电介质材料的主要制备策略,包括纳米填料表面修饰改性、多相共混复合和多层结构调控以及由此实现的介电性能和储能密度的提升。  相似文献   

9.
《电世界》2016,(8)
正近日,南京理工大学夏晖教授团队成功合成了非晶Fe OOH/石墨烯复合纳米片。这种新型非晶材料将大幅降低超级电容器的成本,极大地推动其商业化。一直以来,超级电容器电极材料的研究集中在纳米晶材料上,但是纳米晶材料的结构很难扩张或收缩的性质限制了超级电容器的循环寿命和快速充  相似文献   

10.
在电容型储能脉冲功率电源中,脉冲电容器的储能密度直接影响脉冲功率电源和脉冲功率系统的小型化发展.目前,脉冲电容器的介质材料多采用双向拉伸聚丙烯薄膜(BOPP),其储能密度很难进一步提升,因此需要研究新型电容储能材料,以提高电容器的储能密度.本文以电容器用储能电介质为研究对象,对聚合物基无机纳米复合电介质(PVDF/Ti...  相似文献   

11.
金属氧化物超级电容器的研究进展   总被引:4,自引:2,他引:2  
杨惠  石兆辉  陈野  张密林 《电池》2005,35(6):477-479
与蓄电池相比,超级电容器具有较高的比功率;与传统电容器相比,超级电容器具有较大的容量和较高的能量,且工作温度范围宽、循环寿命长.金属氧化物超级电容器的储能以法拉第准电容为主,其电极材料分为三类:贵金属氧化物、贱金属氧化物和复合型金属氧化物.综述了金属氧化物超级电容器的储能机理、制备及最新研究进展;介绍了电容器中电解液、隔膜材料和集流体的相关性能.  相似文献   

12.
一维纳米材料在超级电容器中的应用   总被引:1,自引:0,他引:1  
桑林  王美丽  黄成德 《电源技术》2007,31(9):697-700
简要介绍了超级电容器(电化学电容器)的特点,指出了纳米电极材料的应用优势,详细综述了一维纳米材料应用于超级电容器的研究进展与现状,并预测了未来超级电容器电极材料的研究方向.  相似文献   

13.
超级电容器相较于传统储能装置,具有使用寿命长、功率密度高、充放电速率快等优点。赝电容作为超级电容器的重要分支,是一种具有高比功率和能量密度的新型储能器件。综述了赝电容型超级电容器电极材料的储能机制及电化学特性,并对其未来的研究重点和发展方向进行展望。  相似文献   

14.
刘文凤  刘标  程璐 《高电压技术》2023,(3):1046-1054
储能薄膜电容器因其功率密度高、工作电压高、自愈特性好以及可靠性高的优势,被广泛应用于智能电网、电动汽车和电力调节中。但聚合物电介质材料偏低的储能密度和较大的介电损耗限制了储能薄膜电容器的轻量化、小型化以及可靠性发展。文章综述了基于优化复合电介质材料高储能密度和低介电损耗的最新研究进展,涉及复合电介质材料的结构特性、介电性能、电气强度以及储能机理,比较和分析了提高聚合物电介质材料储能特性的几种常用策略,包括多组分无机填料共填充、纳米表面改性、多层结构复合、分子结构设计、薄膜表面沉积涂覆等方法对其储能特性的提升规律与调控机制,最后对高储能聚合物电介质材料的现存问题以及未来发展方向进行了总结与展望。  相似文献   

15.
利用碳材料廉价、高比电容、易制取等独特优点,通过优化组合活性炭、碳纳米管和二氧化锰材料的配比,制备碳基复合电极材料。根据循环伏安、交流阻抗和恒流充放电等实验测试,结果显示由上述复合电极组装的电化学超级电容器具有较高的功率密度和能量密度,并具有适用于大电流放电的频率特性和阻抗特性。经过若干次的充放电后,电容仍呈现出良好的循环特性。因此得出,由该炭基复合电极材料组成的超级电容器是一种理想的储能器件。  相似文献   

16.
宋如  谭伟强  祁丽桦  杨启鹏 《电池》2021,51(1):93-97
介绍导电金属有机框架配合物(MOFs)、MOFs基碳材料和MOFs基金属氧化物等3种MOFs基电极材料在超级电容器领域的研究进展.主要分析讨论了超级电容器电化学性能(电容、稳定性、倍率性等)的影响因素及与电极材料结构特点的关系,并展望了高性能电极材料的发展方向.  相似文献   

17.
发展中的电化学电容器   总被引:4,自引:0,他引:4  
详述了电化学电容器的特点:可高倍率充放电,充放循环寿命远大于可充电电池,它在充放电过程中产生的热效应小于电池充放电过程中产生的热效应。讨论了各种类型的电化学电容器:双电层电容器、吸附作用产生的准电容、混合电化学电容器、导电聚合物氧化还原超电容器和复合电极电化学电容器。阐述了超级电容器的各种应用;指出它是具有发展前景的一种能量贮存利用装置。  相似文献   

18.
作为电容储能器件的核心材料,高储能电介质在智能电网和高能武器等先进装备领域具有重要的实用价值。为提高聚合物电介质材料的储能密度,多采用复合技术制备聚合物基纳米复合电介质。首先介绍了现有聚合物基复合体系的基本理论及结构模型,并着重从介电常数、击穿场强和介电损耗3个关键技术指标入手总结了近年来取得的相关研究成果。最后,在此基础上对聚合物基纳米复合电介质材料目前存在的科学问题进行了探讨和展望。  相似文献   

19.
正美国莱斯大学研究人员已经开发出一种纳米多孔材料,该材料具有电化学电池的能量密度和超级电容器的功率密度。重要的是,用该材料制备的储能装置不是这两种类型的储能装置中的任何一种。研究界已经避免声称某些新型纳米材料能够制成"超级电容器",而事实上,储能装置根本不是超级电容器,而是电池。然而,在这种情况下,莱斯大学以James Tour为首的研究  相似文献   

20.
电化学电容器及其研究进展   总被引:10,自引:3,他引:10  
电化学电容器是近年发展的一种新型能量储存装置,本文介绍电化学电容器储存电能的原理、特点及应用,并简要评述了以碳材料、贵金属氧化物及导电聚合物做为电化学电容器电极材料的研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号