首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立一个三维直流道质子交换膜燃料电池单体模型,运用数值方法计算了阳极入口气体不同加湿情况下,电池阴阳极侧水沿流道方向的分布,并得到不同工况下的燃料电池极化曲线。计算结果表明,有效的阳极加湿能提高电池性能,但阳极含水过高会使阴极反扩散受到抑制,从而使阴极含水量过多,甚至出现电极溢流现象,可见阳极加湿过量会加剧高电流密度下电池的浓差极化。  相似文献   

2.
在疏水碳纸中加入聚四氟乙烯(PTFE)并增加其含量,实验表明,过多的PTFE的加入,降低了碳纸的电导率,阻塞了气体电极的孔隙,导致电池性能下降,20% PTFE的含量较为合适;在催化层中添加造孔剂,增大了空气中氧气和电极的接触面积,减小了扩散极化,提高了电池的性能,使电池在Pt载量为0.5 mg ·cm-2、常压氢气和空气的操作条件下,其功率密度达到了0.3 W·cm-2 。  相似文献   

3.
电极结构对质子交换膜燃料电池性能的影响   总被引:4,自引:1,他引:4  
采用沉积法制备质子交换膜燃料电池电极,研究了电极结构对电池性能的影响。催化层内憎水材料聚四氟乙烯(PTFE)形成憎水孔,为气体传递提供通道,减小传质过电位,但是过多的PTFE将增大电子阻力;催化层内浸入质子导体Nafion,为质子传递提供通道,增大电化学反应界面,提高催化剂的利用率,但过多的Nafion将减少气体通道,增大气体传递阻力;同样催化层中催化剂亦有最适值,过少不能满足电极电化学反应的要求,过多将增大气体和质子传递阻力。本文所制的电极在获得最佳电池性能时,催化层内催化剂Pt为6mg/cm2,Nafion为0.5mg/cm2,PTFE为10%。  相似文献   

4.
阴、阳极加湿对质子交换膜燃料电池性能影响的差异性   总被引:2,自引:0,他引:2  
阴、阳极气体相对湿度是对质子交换膜燃料电池(PEMFC)性能影响最为重要的因素。通过建立一个三维直流道质子交换膜燃料电池单体模型,运用数值模拟方法研究了反应气体相对湿度对PEMFC性能的影响及差异性。结果表明,在高操作电压时,燃料电池性能随阴、阳极气体相对湿度的增加而提高;在低操作电压时,燃料电池性能随阴、阳极相对湿度的增加而降低。同时,在高操作电压下,阳极气体加湿程度对电池性能的影响比阴极气体加湿程度对电池性能的影响大,但在低操作电压下,阴极气体加湿程度对电池性能的影响更大。通过对质子交换膜的阴极、阳极侧含水量分布的分析,探讨了阴极、阳极加湿对PEMFC性能影响差异性的原因。研究结果对于燃料电池的水管理具有一定指导意义。  相似文献   

5.
质子交换膜燃料电池的氧电极   总被引:10,自引:2,他引:8  
采用三种还原剂 ,通过化学还原沉积得到Pt/C催化剂 ,其中甲酸钠还原得到的催化剂制成的电极性能最好。为降低铂用量 ,采用Pt Pd/C混合催化剂代替Pt/C催化剂 ,通过对不同Pd含量催化剂及其电极性能的研究 ,确定了最佳配比为Pd占贵金属总含量 6 5 %。近年来Pt/C Nafion电极性能有很大提高 ,Nafion加入后堵塞了一部分气孔 ,阻碍气体传质 ,在催化剂合膏时加入一定量的无水Na2 SO4 ,电极成型后再发孔 ,Na2 SO4 被溶解掉 ,留下大量孔隙 ,透气性增加 ,在一定程度上解决了传质问题。  相似文献   

6.
质子交换膜燃料电池CCM膜电极   总被引:1,自引:0,他引:1  
采用喷涂工艺制备了三合一(CCM,Catalyst Coated Membrane)型质子交换膜燃料电池膜电极,研究了分散剂、催化剂、质子交换膜对膜电极性能的影响.结果表明:CCM型膜电极的放电性能好于传统热压方法制备的膜电极;乙醇、异丙醇和乙二醇等水溶液分散剂对CCM膜电极中低电流密度区放电性能影响不大,而在高电流的浓差极化控制区乙二醇最佳,而乙醇最差;优化催化剂的Pt担量和阴极催化剂的用量能够显著提高膜电极的性能,而通过减小质子交换膜的厚度,降低膜的面电阻可以进一步提高膜电极的放电性能.  相似文献   

7.
质子交换膜燃料电池膜电极组件研究   总被引:3,自引:1,他引:3  
膜电极组件(MEA)是质子交换膜燃料电池的核心部件。系统地研究了MEA的组成和结构对其性能的影响。研究提出:催化层中掺杂Nafion聚合物的亲水电极比传统的催化层中掺杂PTFE的疏水电极性能有了较大的提高;不同种类质子交换膜对MEA的性能影响很大,Nafion112和Dow膜是目前比较适宜的质子交换膜;采用石墨类碳纸的电极性能高于采用碳纤维类碳纸的电极;电极催化层中Nafion聚合物的最佳含量比为30%左右。根据氢电极和氧电极反应难度的不同,提出为了减少催化剂的用量同时不显著影响电池的性能,氢电极的铂载量应该低于电极的观点,并通过了实验验证。  相似文献   

8.
质子交换膜燃料电池薄型石墨双极板研究   总被引:1,自引:1,他引:0  
通过用有机硅树脂对高分子环氧树脂及线型酚醛树脂进行改性后和导电材料膨胀石墨制作复合材料,然后将该复合材料采用模压制作燃料电池双极板,由于有机硅树脂添加,使复合材料的伸长率大大提高,而树脂固化后的机械性能几乎没有受到影响,从而使复合材料的厚度可减小以制作成薄型石墨双极板.  相似文献   

9.
刘向  郭振波  张伟  王东  钱斌 《电源技术》2007,31(2):116-119
用质量百分比为40%Pt/C Nafion制备了亲水电极,并与Nafion112质子交换膜热压制备了质子交换膜燃料电池膜电极组件.用恒电流极化和电化学阻抗谱研究了电极组分对性能的影响,同时优化了各组分的含量.在碳纸基体和催化剂层之间引入了C/FEP催化剂支撑层,支撑层碳粉的优化载量为0.8 mg/cm2,FEP的优化质量百分含量为40%.电极催化剂层Pt的适宜载量为(0.40±0.05)mg/cm2,Nafion的优化质量百分含量为30%.  相似文献   

10.
四电极质子补偿法测量质子交换膜的电导率   总被引:3,自引:3,他引:3  
对质子交换膜电导率的测试方法进行了分析,针对影响准确测量电导率的因素而设计了一种四电极质子补偿测试法,研究结果表明,该方法与通常采用的四电极测试法相比,简单方便,精度高,能有效地避开极化与测量时间的影响。  相似文献   

11.
质子交换膜燃料电池中氢电极和氧电极性能的研究   总被引:6,自引:1,他引:6  
采用三种活性碳和三种还原剂,通过化学还原得到Pt/C催化剂.将涂在碳布上的Pt/C催化剂在125℃下热压在Nafion膜上,制成氢电极和氧电极,用循环伏安和极化方法研究了Pt/C-Nafion膜电极的性能.结果表明,这种电极的性能主要与活性碳的种类有关,而制备催化剂的还原剂起着次要的作用.对质子交换膜燃料电池的电流-电压性能和放电行为进行了初步研究.  相似文献   

12.
研究了金属离子对质子交换膜燃料电池(PEMFC)性能的影响.通过将质子交换膜、电极催化层、扩散层(GDL)在模拟电池生成水的离子溶液(Ca2 、Mg2 、Na )中浸泡不同的时间,考察了Nafion NRE-212膜和催化层中氢离子含量、扩散层的接触角,并通过组装电池比较了处理不同时间的膜、催化层压制成电极后的膜电极性能.结合循环伏安技术分析了金属离子对电极催化层的影晌.实验结果表明随着浸泡时间的增加,膜中和催化层中氢离子的浓度都逐渐下降,当膜中H 浓度降为原来的20%以下时,电池几乎不能放电;而催化层中下降为原来的27%时,电极性能却下降不大.说明在相同浓度的金属离子溶液中,催化层中氢离子受金属离子污染程度比膜受污染程度小.  相似文献   

13.
质子交换膜燃料电池电极催化剂的研究进展   总被引:3,自引:0,他引:3  
催化剂的研究对降低质子交换膜燃料电池(PEMFC)的成本及其发展具有重要意义。介绍了PEMFC中阳极催化剂和阴极催化剂的研究进展。并根据目前的研究现状,提出了开发低铂含量合金电催化剂,无铂金属大环螯合物,以及其他具有同时可传导电子和质子能力的新型聚合物或带有吡啶形式N原子的碳化微孔聚合物为载体的催化剂可能成为研究热点。  相似文献   

14.
Nafion膜厚度对质子交换膜燃料电池性能的影响   总被引:11,自引:0,他引:11  
采用不同厚度Nafion膜 (Nafion 117,115 ,1135 ,112和 10 1)组装质子交换膜燃料电池 (PEMFC) ,通过测试电池极化曲线 (U/I) ,研究Nafion膜厚度对PEMFC工作性能、氧气还原反应的电极动力学参数和电池内阻的影响 ,通过线性回归分析不同厚度Nafion膜组装PEMFC的内阻计算了Nafion膜材料的电导率。实验结果表明 :( 1)降低电解质膜的厚度将会降低电池的内阻 ,从而有利于提高PEMFC的工作性能 ;( 2 )随着膜厚度的降低 ,U0 值有降低的趋势 ,Tafel斜率b值变化不明显 ;( 3)厚膜组装电池的极化曲线在低电流密度时就偏离了线性 ,其主要原因是质子传质极化引起的 ;( 4 ) 80℃时Nafion膜材料的电导率约为 0 .0 77Ω-1·cm-1。  相似文献   

15.
通过实验的方法测量了质子交换膜燃料电池(PEMFC)工况条件下膜电极(MEA)在不同压差下的形变量.基于力学中固定梁模型建立了MEA形变与其两侧压差之间的关系,并应用泰勒公式展开对挠曲变形进行一阶近似修正,可预测不同压力差或流道宽度时对应MEA的挠度曲线,为流场设计提供可靠依据.  相似文献   

16.
为了研究阳极压力降对质子交换膜燃料电池性能的影响,提出了一个新的相对湿度-压力降(RHPD)模型。RHPD模型考虑了由阳极含水量变化引起的质子交换膜燃料电池阳极压力降变化的现象。将RHPD模型通过自定义函数导入Fluent中,完成燃料电池在不同工况下的仿真计算。对工作温度为60℃,阴极相对湿度为50%,阳极相对湿度分别为25%,50%,75%下的电池性能进行了测定。通过比较Fluent模型,RHPD模型和试验数据三者发现:相对湿度为25%,电流密度为445 mA/cm~2,RHPD模型和试验值数据间仅存在0.11%误差。  相似文献   

17.
合理的流场结构能够提高燃料电池性能以及燃料的利用率.通过建立新型流场结构,对新型流场的速度矢量、流道内压力分布、阴极氧含量的分布等进行了分析.研究结果表明:在流道内压降合理的情况下,在流道轴线上建立均匀分布、不同数量的矩形沟槽时,矩形沟槽数N=5为最适宜的沟槽数;在流场中分别加入波浪形沟槽、矩形沟槽和三角形沟槽,对电池...  相似文献   

18.
流场尺寸对质子交换膜燃料电池性能的影响   总被引:5,自引:0,他引:5  
流场的形状和尺寸是设计双极板的核心。合理的流场既要确保电极各处均能获得充足的反应剂供应,同时又要保证反应产物水的排出。研究了不同流场尺寸对质子交换膜燃料电池性能的影响。实验结果表明:在一定范围内,随着开孔率的增加,电极与流场本相及接触电阻也逐渐增加;开孔率相近时,这一电阻相差不大。在相同开孔率的情况下,沟槽尺寸越小,电池性能越好。  相似文献   

19.
转印法是一种间接将催化层涂布在质子交换膜上的膜电极组件制备方法,其制备工艺简单,周期短,且制备过程中质子交换膜不与任何溶剂接触,有效避免了膜的溶胀问题。采用刮刀涂布技术,将催化剂浆料均匀地涂布于转印膜上,调节刮刀间隙与刮刀运行速度可有效地控制金属催化剂的载量。扫描电子显微镜法(SEM)测试表明转印后的催化层表面形貌完整、孔隙分布均匀,膜电极各组件之间结合紧密且厚度一致。将该工艺制备的膜电极组装成单电池,测试结果表明:在阴、阳极Pt载量分别为0.463、0.264 mg/cm2条件下,以空气作为阴极反应气体的单电池在常压下的最大功率密度可达0.75 W/cm2。  相似文献   

20.
质子交换膜燃料电池膜电极活化工艺及机理   总被引:4,自引:4,他引:4  
朱科  陈延禧  韩佐青  张继炎  孙燕宝 《电源技术》2002,26(4):267-268,325
通过质子交换膜燃料电池膜电极三种活化工艺即恒流自然活化、恒流强制活化和变流强制活化的对比研究得出 :强制活化 (包括恒流强制活化和变流强制活化 )优于自然活化 ;在强制活化工艺中 ,变流强制活化优于恒流强制活化 ;而且变流强制活化所用的时间相对于恒流强制活化及恒流自然活化均大大缩短 ,是一种比较好的活化方法 ;膜电极的活化过程不仅仅是一种质子交换膜的加湿过程 ,而且是一个包括电子、质子、气体和水的传输通道的建立以及电极结构的优化的复杂过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号