首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many video sequences consist of a locally dynamic background containing moving foreground subjects. In this paper we propose a novel way of re‐displaying these sequences, by giving the user control over a virtual camera frame. Based on video mosaicing, we first compute a static high quality background panorama. After segmenting and removing the foreground subjects from the original video, the remaining elements are merged into a dynamic background panorama, which seamlessly extends the original video footage. We then re‐display this augmented video by warping and cropping the panorama. The virtual camera can have an enlarged field‐of‐view and a controlled camera motion. Our technique is able to process videos with complex camera motions, reconstructing high quality panoramas without parallax artefacts, visible seams or blurring, while retaining repetitive dynamic elements.  相似文献   

2.
It is a challenging task for ordinary users to capture selfies with a good scene composition, given the limited freedom to position the camera. Creative hardware (e.g., selfie sticks) and software (e.g., panoramic selfie apps) solutions have been proposed to extend the background coverage of a selife, but to achieve a perfect composition on the spot when the selfie is captured remains to be difficult. In this paper, we propose a system that allows the user to shoot a selfie video by rotating the body first, then produce a final panoramic selfie image with user‐guided scene composition as postprocessing. Our key technical contribution is a fully Automatic, robust multi‐frame segmentation and stitching framework that is tailored towards the special characteristics of selfie images. We analyze the sparse feature points and employ a spatial‐temporal optimization for bilayer feature segmentation, which leads to more reliable background alignment than previous image stitching techniques. The sparse classification is then propagated to all pixels to create dense foreground masks for person‐background composition. Finally, based on a user‐selected foreground position, our system uses content‐preserving warping to produce a panoramic seflie with minimal distortion to the face region. Experimental results show that our approach can reliably generate high quality panoramic selfies, while a simple combination of previous image stitching and segmentation approaches often fails.  相似文献   

3.
Annoying shaky motion is one of the significant problems in home videos, since hand shake is an unavoidable effect when capturing by using a hand‐held camcorder. Video stabilization is an important technique to solve this problem, but the stabilized videos resulting from some current methods usually have decreased resolution and are still not so stable. In this paper, we propose a robust and practical method of full‐frame video stabilization while considering user's capturing intention to remove not only the high frequency shaky motions but also the low frequency unexpected movements. To guess the user's capturing intention, we first consider the regions of interest in the video to estimate which regions or objects the user wants to capture, and then use a polyline to estimate a new stable camcorder motion path while avoiding the user's interested regions or objects being cut out. Then, we fill the dynamic and static missing areas caused by frame alignment from other frames to keep the same resolution and quality as the original video. Furthermore, we smooth the discontinuous regions by using a three‐dimensional Poisson‐based method. After the above automatic operations, a full‐frame stabilized video can be achieved and the important regions and objects can also be preserved.  相似文献   

4.
Cinemagraphs are a popular new type of visual media that lie in‐between photos and video; some parts of the frame are animated and loop seamlessly, while other parts of the frame remain completely still. Cinemagraphs are especially effective for portraits because they capture the nuances of our dynamic facial expressions. We present a completely automatic algorithm for generating portrait cinemagraphs from a short video captured with a hand‐held camera. Our algorithm uses a combination of face tracking and point tracking to segment face motions into two classes: gross, large‐scale motions that should be removed from the video, and dynamic facial expressions that should be preserved. This segmentation informs a spatially‐varying warp that removes the large‐scale motion, and a graph‐cut segmentation of the frame into dynamic and still regions that preserves the finer‐scale facial expression motions. We demonstrate the success of our method with a variety of results and a comparison to previous work.  相似文献   

5.
This paper proposes an algorithm which uses image registration to estimate a non‐uniform motion blur point spread function (PSF) caused by camera shake. Our study is based on a motion blur model which models blur effects of camera shakes using a set of planar perspective projections (i.e., homographies). This representation can fully describe motions of camera shakes in 3D which cause non‐uniform motion blurs. We transform the non‐uniform PSF estimation problem into a set of image registration problems which estimate homographies of the motion blur model one‐by‐one through the Lucas‐Kanade algorithm. We demonstrate the performance of our algorithm using both synthetic and real world examples. We also discuss the effectiveness and limitations of our algorithm for non‐uniform deblurring.  相似文献   

6.
Capturing exposure sequences to compute high dynamic range (HDR) images causes motion blur in cases of camera movement. This also applies to light‐field cameras: frames rendered from multiple blurred HDR light‐field perspectives are also blurred. While the recording times of exposure sequences cannot be reduced for a single‐sensor camera, we demonstrate how this can be achieved for a camera array. Thus, we decrease capturing time and reduce motion blur for HDR light‐field video recording. Applying a spatio‐temporal exposure pattern while capturing frames with a camera array reduces the overall recording time and enables the estimation of camera movement within one light‐field video frame. By estimating depth maps and local point spread functions (PSFs) from multiple perspectives with the same exposure, regional motion deblurring can be supported. Missing exposures at various perspectives are then interpolated.  相似文献   

7.
Image matting aims at extracting foreground elements from an image by means of color and opacity (alpha) estimation. While a lot of progress has been made in recent years on improving the accuracy of matting techniques, one common problem persisted: the low speed of matte computation. We present the first real‐time matting technique for natural images and videos. Our technique is based on the observation that, for small neighborhoods, pixels tend to share similar attributes. Therefore, independently treating each pixel in the unknown regions of a trimap results in a lot of redundant work. We show how this computation can be significantly and safely reduced by means of a careful selection of pairs of background and foreground samples. Our technique achieves speedups of up to two orders of magnitude compared to previous ones, while producing high‐quality alpha mattes. The quality of our results has been verified through an independent benchmark. The speed of our technique enables, for the first time, real‐time alpha matting of videos, and has the potential to enable a new class of exciting applications.  相似文献   

8.
SecondSkin estimates an appearance model for an object visible in a video sequence, without the need for complex interaction or any calibration apparatus. This model can then be transferred to other objects, allowing a non‐expert user to insert a synthetic object into a real video sequence so that its appearance matches that of an existing object, and changes appropriately throughout the sequence. As the method does not require any prior knowledge about the scene, the lighting conditions, or the camera, it is applicable to video which was not captured with this purpose in mind. However, this lack of prior knowledge precludes the recovery of separate lighting and surface reflectance information. The SecondSkin appearance model therefore combines these factors. The appearance model does require a dominant light‐source direction, which we estimate via a novel process involving a small amount of user interaction. The resulting model estimate provides exactly the information required to transfer the appearance of the original object to new geometry composited into the same video sequence.  相似文献   

9.
Image blur caused by object motion attenuates high frequency content of images, making post‐capture deblurring an ill‐posed problem. The recoverable frequency band quickly becomes narrower for faster object motion as high frequencies are severely attenuated and virtually lost. This paper proposes to translate a camera sensor circularly about the optical axis during exposure, so that high frequencies can be preserved for a wide range of in‐plane linear object motion in any direction within some predetermined speed. That is, although no object may be photographed sharply at capture time, differently moving objects captured in a single image can be deconvolved with similar quality. In addition, circular sensor motion is shown to facilitate blur estimation thanks to distinct frequency zero patterns of the resulting motion blur point‐spread functions. An analysis of the frequency characteristics of circular sensor motion in relation to linear object motion is presented, along with deconvolution results for photographs captured with a prototype camera.  相似文献   

10.
Segmenting a moving foreground (fg) from its background (bg) is a fundamental step in many Machine Vision and Computer Graphics applications. Nevertheless, hardly any attempts have been made to tackle this problem in dynamic 3D scanned scenes. Scanned dynamic scenes are typically challenging due to noise and large missing parts. Here, we present a novel approach for motion segmentation in dynamic point‐cloud scenes designed to cater to the unique properties of such data. Our key idea is to augment fg/bg classification with an active learning framework by refining the segmentation process in an adaptive manner. Our method initially classifies the scene points as either fg or bg in an un‐supervised manner. This, by training discriminative RBF‐SVM classifiers on automatically labeled, high‐certainty fg/bg points. Next, we adaptively detect unreliable classification regions (i.e. where fg/bg separation is uncertain), locally add more training examples to better capture the motion in these areas, and re‐train the classifiers to fine‐tune the segmentation. This not only improves segmentation accuracy, but also allows our method to perform in a coarse‐to‐fine manner, thereby efficiently process high‐density point‐clouds. Additionally, we present a unique interactive paradigm for enhancing this learning process, by using a manual editing tool. The user explicitly edits the RBF‐SVM decision borders in unreliable regions in order to refine and correct the classification. We provide extensive qualitative and quantitative experiments on both real (scanned) and synthetic dynamic scenes.  相似文献   

11.
We present an alternative approach to create digital camouflage images which follows human's perception intuition and complies with the physical creation procedure of artists. Our method is based on a two‐scale decomposition scheme of the input images. We modify the large‐scale layer of the background image by considering structural importance based on energy optimization and the detail layer by controlling its spatial variation. A gradient correction is presented to prevent halo artifacts. Users can control the difficulty level of perceiving the camouflage effect through a few parameters. Our camouflage images are natural and have less long coherent edges in the hidden region. Experimental results show that our algorithm yields visually pleasing camouflage images.  相似文献   

12.
We present a real‐time multi‐view facial capture system facilitated by synthetic training imagery. Our method is able to achieve high‐quality markerless facial performance capture in real‐time from multi‐view helmet camera data, employing an actor specific regressor. The regressor training is tailored to specified actor appearance and we further condition it for the expected illumination conditions and the physical capture rig by generating the training data synthetically. In order to leverage the information present in live imagery, which is typically provided by multiple cameras, we propose a novel multi‐view regression algorithm that uses multi‐dimensional random ferns. We show that higher quality can be achieved by regressing on multiple video streams than previous approaches that were designed to operate on only a single view. Furthermore, we evaluate possible camera placements and propose a novel camera configuration that allows to mount cameras outside the field of view of the actor, which is very beneficial as the cameras are then less of a distraction for the actor and allow for an unobstructed line of sight to the director and other actors. Our new real‐time facial capture approach has immediate application in on‐set virtual production, in particular with the ever‐growing demand for motion‐captured facial animation in visual effects and video games.  相似文献   

13.
We describe a novel multiplexing approach to achieve tradeoffs in space, angle and time resolution in photography. We explore the problem of mapping useful subsets of time‐varying 4D lightfields in a single snapshot. Our design is based on using a dynamic mask in the aperture and a static mask close to the sensor. The key idea is to exploit scene‐specific redundancy along spatial, angular and temporal dimensions and to provide a programmable or variable resolution tradeoff among these dimensions. This allows a user to reinterpret the single captured photo as either a high spatial resolution image, a refocusable image stack or a video for different parts of the scene in post‐processing. A lightfield camera or a video camera forces a‐priori choice in space‐angle‐time resolution. We demonstrate a single prototype which provides flexible post‐capture abilities not possible using either a single‐shot lightfield camera or a multi‐frame video camera. We show several novel results including digital refocusing on objects moving in depth and capturing multiple facial expressions in a single photo.  相似文献   

14.
Images/videos captured by portable devices (e.g., cellphones, DV cameras) often have limited fields of view. Image stitching, also referred to as mosaics or panorama, can produce a wide angle image by compositing several photographs together. Although various methods have been developed for image stitching in recent years, few works address the video stitching problem. In this paper, we present the first system to stitch videos captured by hand‐held cameras. We first recover the 3D camera paths and a sparse set of 3D scene points using CoSLAM system, and densely reconstruct the 3D scene in the overlapping regions. Then, we generate a smooth virtual camera path, which stays in the middle of the original paths. Finally, the stitched video is synthesized along the virtual path as if it was taken from this new trajectory. The warping required for the stitching is obtained by optimizing over both temporal stability and alignment quality, while leveraging on 3D information at our disposal. The experiments show that our method can produce high quality stitching results for various challenging scenarios.  相似文献   

15.
This paper presents methods for photo‐realistic rendering using strongly spatially variant illumination captured from real scenes. The illumination is captured along arbitrary paths in space using a high dynamic range, HDR, video camera system with position tracking. Light samples are rearranged into 4‐D incident light fields (ILF) suitable for direct use as illumination in renderings. Analysis of the captured data allows for estimation of the shape, position and spatial and angular properties of light sources in the scene. The estimated light sources can be extracted from the large 4D data set and handled separately to render scenes more efficiently and with higher quality. The ILF lighting can also be edited for detailed artistic control.  相似文献   

16.
In this paper we present a new practical camera characterization technique to improve color accuracy in high dynamic range (HDR) imaging. Camera characterization refers to the process of mapping device‐dependent signals, such as digital camera RAW images, into a well‐defined color space. This is a well‐understood process for low dynamic range (LDR) imaging and is part of most digital cameras — usually mapping from the raw camera signal to the sRGB or Adobe RGB color space. This paper presents an efficient and accurate characterization method for high dynamic range imaging that extends previous methods originally designed for LDR imaging. We demonstrate that our characterization method is very accurate even in unknown illumination conditions, effectively turning a digital camera into a measurement device that measures physically accurate radiance values — both in terms of luminance and color — rivaling more expensive measurement instruments.  相似文献   

17.
Despite their high popularity, common high dynamic range (HDR) methods are still limited in their practical applicability: They assume that the input images are perfectly aligned, which is often violated in practise. Our paper does not only free the user from this unrealistic limitation, but even turns the missing alignment into an advantage: By exploiting the multiple exposures, we can create a super‐resolution image. The alignment step is performed by a modern energy‐based optic flow approach that takes into account the varying exposure conditions. Moreover, it produces dense displacement fields with subpixel precision. As a consequence, our approach can handle arbitrary complex motion patterns, caused by severe camera shake and moving objects. Additionally, it benefits from several advantages over existing strategies: (i) It is robust under outliers (noise, occlusions, saturation problems) and allows for sharp discontinuities in the displacement field. (ii) The alignment step neither requires camera calibration nor knowledge of the exposure times. (iii) It can be efficiently implemented on CPU and GPU architectures. After the alignment is performed, we use the obtained subpixel accurate displacement fields as input for an energy‐based, joint super‐resolution and HDR (SR‐HDR) approach. It introduces robust data terms and anisotropic smoothness terms in the SR‐HDR literature. Our experiments with challenging real world data demonstrate that these novelties are pivotal for the favourable performance of our approach.  相似文献   

18.
This paper presents a novel approach to visualize the uncertainty in graph‐based segmentations of scalar data. Segmentation of 2D scalar data has wide application in a variety of scientific and medical domains. Typically, a segmentation is presented as a single unambiguous boundary although the solution is often uncertain due to noise or blur in the underlying data as well as imprecision in user input. Our approach provides insight into this uncertainty by computing the “min‐path stability”, a scalar measure analyzing the stability of the segmentation given a set of input constraints. Our approach is efficient, easy to compute, and can be generally applied to either graph cuts or live‐wire (even partial) segmentations. In addition to its general applicability, our new approach to graph cuts uncertainty visualization improves on the time complexity of the current state‐of‐the‐art with an additional fast approximate solution. We also introduce a novel query enabled by our approach which provides users with alternate segmentations by efficiently extracting local minima of the segmentation optimization. Finally, we evaluate our approach and demonstrate its utility on data from scientific and medical applications.  相似文献   

19.
The viewfinder of a digital camera has traditionally been used for one purpose: to display to the user a preview of what is seen through the camera's lens. High quality cameras are now available on devices such as mobile phones and PDAs, which provide a platform where the camera is a programmable device, enabling applications such as online computational photography, computer vision‐based interactive gaming, and augmented reality. For such online applications, the camera viewfinder provides the user's main interaction with the environment. In this paper, we describe an algorithm for aligning successive viewfinder frames. First, an estimate of inter‐frame translation is computed by aligning integral projections of edges in two images. The estimate is then refined to compute a full 2D similarity transformation by aligning point features. Our algorithm is robust to noise, never requires storing more than one viewfinder frame in memory, and runs at 30 frames per second on standard smartphone hardware. We use viewfinder alignment for panorama capture, low‐light photography, and a camera‐based game controller.  相似文献   

20.
We present a simple and effective technique for absolute colorimetric camera characterization, invariant to changes in exposure/aperture and scene irradiance, suitable in a wide range of applications including image‐based reflectance measurements, spectral pre‐filtering and spectral upsampling for rendering, to improve colour accuracy in high dynamic range imaging. Our method requires a limited number of acquisitions, an off‐the‐shelf target and a commonly available projector, used as a controllable light source, other than the reflected radiance to be known. The characterized camera can be effectively used as a 2D tele‐colorimeter, providing the user with an accurate estimate of the distribution of luminance and chromaticity in a scene, without requiring explicit knowledge of the incident lighting power spectra. We validate the approach by comparing our estimated absolute tristimulus values (XYZ data in ) with the measurements of a professional 2D tele‐colorimeter, for a set of scenes with complex geometry, spatially varying reflectance and light sources with very different spectral power distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号