首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Representing the majority of living animals, insects are the most ubiquitous biological organisms on Earth. Being able to simulate insect swarms could enhance visual realism of various graphical applications. However, the very complex nature of insect behaviors makes its simulation a challenging computational problem. To address this, we present a general biologically‐inspired framework for visual simulation of insect swarms. Our approach is inspired by the observation that insects exhibit emergent behaviors at various scales in nature. At the low level, our framework automatically selects and configures the most suitable steering algorithm for the local collision avoidance task. At the intermediate level, it processes insect trajectories into piecewise‐linear segments and constructs probability distribution functions for sampling waypoints. These waypoints are then evaluated by the Metropolis‐Hastings algorithm to preserve global structures of insect swarms at the high level. With this biologically inspired, data‐driven approach, we are able to simulate insect behaviors at different scales and we evaluate our simulation using both qualitative and quantitative metrics. Furthermore, as insect data could be difficult to acquire, our framework can be adopted as a computer‐assisted animation tool to interpret sketch‐like input as user control and generate simulations of complex insect swarming phenomena.  相似文献   

2.
This paper proposes a novel hybrid particle‐grid approach to liquid simulation, which uses the fluid‐implicit‐particle (FLIP) method to resolve the liquid motion and a grid‐based particle correction method to complement FLIP. The correction process addresses the high‐frequency errors in FLIP ensuring that the particles are properly distributed. The proposed approach enables the corrective procedure to avoid directly processing the particle relationships and supports flexible corrective forces. The proposed technique effectively and efficiently improves the distribution of the particles and therefore enhances the overall simulation quality. The experimental results confirm that the technique is able to conserve the liquid volume and to produce dynamic surface motions, thin liquid sheets, and smooth surfaces without disturbing artifacts such as bumpy noise.  相似文献   

3.
The visual simulation of natural phenomena has been widely studied. Although several methods have been proposed to simulate melting, the flows of meltwater drops on the surfaces of objects are not taken into account. In this paper, we propose a particle‐based method for the simulation of the melting and freezing of ice objects and the interactions between ice and fluids. To simulate the flow of meltwater on ice and the formation of water droplets, a simple interfacial tension is proposed, which can be easily incorporated into common particle‐based simulation methods such as Smoothed Particle Hydrodynamics. The computations of heat transfer, the phase transition between ice and water, the interactions between ice and fluids, and the separation of ice due to melting are further accelerated by implementing our method using CUDA. We demonstrate our simulation and rendering method for depicting melting ice at interactive frame‐rates.  相似文献   

4.
We propose a fast and effective technique to improve sub‐grid visual details of the grid based fluid simulation. Our method procedurally synthesizes the flow fields coming from the incompressible Navier‐Stokes solver and the vorticity fields generated by vortex particle method for sub‐grid turbulence. We are able to efficiently animate smoke which is highly turbulent and swirling with small scale details. Since this technique does not solve the linear system in high‐resolution grids, it can perform fluid simulation more rapidly. We can easily estimate the influence of turbulent and swirling effect to the fluid flow.  相似文献   

5.
We present a novel particle‐based method for stable simulation of elasto‐plastic materials. The main contribution of our method is an implicit numerical integrator, using a physically‐based model, for computing particles that undergo both elastic and plastic deformations. The main advantage of our implicit integrator is that it allows the use of large time steps while still preserving stable and physically plausible simulation results. As a key component of our algorithm, at each time step we compute the particle positions and velocities based on a sparse linear system, which we solve efficiently on the graphics hardware. Compared to existing techniques, our method allows for a much wider range of stiffness and plasticity settings. In addition, our method can significantly reduce the computation cost for certain range of material types. We demonstrate fast and stable simulations for a variety of elasto‐plastic materials, ranging from highly stiffelastic materials to highly plastic ones.  相似文献   

6.
We present a new real‐time approach to simulate deformable objects using a learnt statistical model to achieve a high degree of realism. Our approach improves upon state‐of‐the‐art interactive shape‐matching meshless simulation methods by not only capturing important nuances of an object's kinematics but also of its dynamic texture variation. We are able to achieve this in an automated pipeline from data capture to simulation. Our system allows for the capture of idiosyncratic characteristics of an object's dynamics which for many simulations (e.g. facial animation) is essential. We allow for the plausible simulation of mechanically complex objects without knowledge of their inner workings. The main idea of our approach is to use a flexible statistical model to achieve a geometrically‐driven simulation that allows for arbitrarily complex yet easily learned deformations while at the same time preserving the desirable properties (stability, speed and memory efficiency) of current shape‐matching simulation systems. The principal advantage of our approach is the ease with which a pseudo‐mechanical model can be learned from 3D scanner data to yield realistic animation. We present examples of non‐trivial biomechanical objects simulated on a desktop machine in real‐time, demonstrating superior realism over current geometrically motivated simulation techniques.  相似文献   

7.
Example‐based material allows simulating complex material behaviors in an art‐directed way. This paper presents a method for fast subspace integration for example‐based elastic material, which is suitable for real‐time simulation in computer graphics. At the core of the method is the formulation of a new potential using example‐based Green strain tensors. By using this potential, the deformation can be attracted towards the example‐based deformation feature space, the example weights can be explicitly obtained and the internal force can be decomposed into the conventional one and an additional one induced by the examples. The real‐time subspace integration is then developed with subspace integration costs independent of geometric complexity, and both the reduced conventional internal force and additional one being cubic polynomials in reduced coordinates. Experiments demonstrate that our method can achieve real‐time simulation while providing comparable quality with the prior art.  相似文献   

8.
Producing traditional animation is a laborious task where the key drawings are first drawn by artists and thereafter inbetween drawings are created, whether it is by hand or computer‐assisted. Auto‐inbetweening of these 2D key drawings by computer is a non‐trivial task as 3D depths are missing. An alternate approach is to generate all the drawings by extracting lines directly from animated 3D models frame by frame, concatenating and rendering them together into an animation. However, animation quality generated using this straightforward method bears two problems. Firstly, the animation contains unsatisfactory visual artifacts such as line flickering and popping. This is especially pronounced when the lines are extracted using high‐order derivatives, such as ridges and valleys, from 3D models represented in triangle meshes. Secondly, there is a lack of temporal continuity as each drawing is generated without taking its neighboring drawings into consideration. In this paper, we propose an improved approach over the straightforward method by transferring extracted 3D line drawings of each frame into individual 3D lines and processing them along the time domain. Our objective is to minimize the visual artifacts and incorporate temporal relationship of individual lines throughout the entire animation sequence. This is achieved by creating correspondent trajectory of each line from each frame and applying global optimization on each trajectory. To realize this target, we present a fully automatic novel approach, which consists of (1) a line matching algorithm, (2) an optimizing algorithm, taking into account both the variations of numbers and lengths of 3D lines in each frame, and (3) a robust tracing method for transferring collections of line segments extracted from the 3D models into individual lines. We evaluate our approach on several animated model sequences to demonstrate its effectiveness in producing line drawing animations with temporal coherence.  相似文献   

9.
Existing synthesis methods for closely interacting virtual characters relied on user‐specified constraints such as the reaching positions and the distance between body parts. In this paper, we present a novel method for synthesizing new interacting motion by composing two existing interacting motion samples without the need to specify the constraints manually. Our method automatically detects the type of interactions contained in the inputs and determines a suitable timing for the interaction composition by analyzing the spacetime relationships of the input characters. To preserve the features of the inputs in the synthesized interaction, the two inputs will be aligned and normalized according to the relative distance and orientation of the characters from the inputs. With a linear optimization method, the output is the optimal solution to preserve the close interaction of two characters and the local details of individual character behavior. The output animations demonstrated that our method is able to create interactions of new styles that combine the characteristics of the original inputs.  相似文献   

10.
A recent technique that forms virtual ray lights (VRLs) from path segments in media, reduces the artifacts common to VPL approaches in participating media, however, distracting singularities still remain. We present Virtual Beam Lights (VBLs), a progressive many‐lights algorithm for rendering complex indirect transport paths in, from, and to media. VBLs are efficient and can handle heterogeneous media, anisotropic scattering, and moderately glossy surfaces, while provably converging to ground truth. We inflate ray lights into beam lights with finite thicknesses to eliminate the remaining singularities. Furthermore, we devise several practical schemes for importance sampling the various transport contributions between camera rays, light rays, and surface points. VBLs produce artifact‐free images faster than VRLs, especially when glossy surfaces and/or anisotropic phase functions are present. Lastly, we employ a progressive thickness reduction scheme for VBLs in order to render results that converge to ground truth.  相似文献   

11.
Skinning is a simple yet popular deformation technique combining compact storage with efficient hardware accelerated rendering. While skinned meshes (such as virtual characters) are traditionally created by artists, previous work proposes algorithms to construct skinning automatically from a given vertex animation. However, these methods typically perform well only for a certain class of input sequences and often require long pre‐processing times. We present an algorithm based on iterative coordinate descent optimization which handles arbitrary animations and produces more accurate approximations than previous techniques, while using only standard linear skinning without any modifications or extensions. To overcome the computational complexity associated with the iterative optimization, we work in a suitable linear subspace (obtained by quick approximate dimensionality reduction) and take advantage of the typically very sparse vertex weights. As a result, our method requires about one or two orders of magnitude less pre‐processing time than previous methods.  相似文献   

12.
We present photon beam diffusion, an efficient numerical method for accurately rendering translucent materials. Our approach interprets incident light as a continuous beam of photons inside the material. Numerically integrating diffusion from such extended sources has long been assumed computationally prohibitive, leading to the ubiquitous single‐depth dipole approximation and the recent analytic sum‐of‐Gaussians approach employed by Quantized Diffusion. In this paper, we show that numerical integration of the extended beam is not only feasible, but provides increased speed, flexibility, numerical stability, and ease of implementation, while retaining the benefits of previous approaches. We leverage the improved diffusion model, but propose an efficient and numerically stable Monte Carlo integration scheme that gives equivalent results using only 3–5 samples instead of 20–60 Gaussians as in previous work. Our method can account for finite and multi‐layer materials, and additionally supports directional incident effects at surfaces. We also propose a novel diffuse exact single‐scattering term which can be integrated in tandem with the multi‐scattering approximation. Our numerical approach furthermore allows us to easily correct inaccuracies of the diffusion model and even combine it with more general Monte Carlo rendering algorithms. We provide practical details necessary for efficient implementation, and demonstrate the versatility of our technique by incorporating it on top of several rendering algorithms in both research and production rendering systems.  相似文献   

13.
State‐of‐the‐art density estimation methods for rendering participating media rely on a dense photon representation of the radiance distribution within a scene. A critical bottleneck of such kernel‐based approaches is the excessive number of photons that are required in practice to resolve fine illumination details, while controlling the amount of noise. In this paper, we propose a parametric density estimation technique that represents radiance using a hierarchical Gaussian mixture. We efficiently obtain the coefficients of this mixture using a progressive and accelerated form of the Expectation‐Maximization algorithm. After this step, we are able to create noise‐free renderings of high‐frequency illumination using only a few thousand Gaussian terms, where millions of photons are traditionally required. Temporal coherence is trivially supported within this framework, and the compact footprint is also useful in the context of real‐time visualization. We demonstrate a hierarchical ray tracing‐based implementation, as well as a fast splatting approach that can interactively render animated volume caustics.  相似文献   

14.
We present novel visual and interactive techniques for exploratory visualization of animal kinematics using instantaneous helical axes (IHAs). The helical axis has been used in orthopedics, biomechanics, and structural mechanics as a construct for describing rigid body motion. Within biomechanics, recent imaging advances have made possible accurate high‐speed measurements of individual bone positions and orientations during experiments. From this high‐speed data, instantaneous helical axes of motion may be calculated. We address questions of effective interactive, exploratory visualization of this high‐speed 3D motion data. A 3D glyph that encodes all parameters of the IHA in visual form is presented. Interactive controls are used to examine the change in the IHA over time and relate the IHA to anatomical features of interest selected by a user. The techniques developed are applied to a stereoscopic, interactive visualization of the mechanics of pig mastication and assessed by a team of evolutionary biologists who found interactive IHA‐based analysis a useful addition to more traditional motion analysis techniques.  相似文献   

15.
We present an approach to improve the search efficiency for near‐optimal motion synthesis using motion graphs. An optimal or near‐optimal path through a motion graph often leads to the most intuitive result. However, finding such a path can be computationally expensive. Our main contribution is a bidirectional search algorithm. We dynamically divide the search space evenly and merge two search trees to obtain the final solution. This cuts the maximum search depth almost in half and leads to significant speedup. To illustrate the benefits of our approach, we present an interactive sketching interface that allows users to specify complex motions quickly and intuitively.  相似文献   

16.
We present a new method to create and preserve the turbulent details generated around moving objects in SPH fluid. In our approach, a high‐resolution overlapping grid is bounded to each object and translates with the object. The turbulence formation is modeled by resolving the local flow around objects using a hybrid SPH‐FLIP method. Then these vortical details are carried on SPH particles flowing through the local region and preserved in the global field in a synthetic way. Our method provides a physically plausible way to model the turbulent details around both rigid and deformable objects in SPH fluid, and can efficiently produce animations of complex gaseous phenomena with rich visual details.  相似文献   

17.
This paper presents an efficient technique for synthesizing motions by stitching, or splicing, an upper‐body motion retrieved from a motion space on top of an existing lower‐body locomotion of another motion. Compared to the standard motion splicing problem, motion space splicing imposes new challenges as both the upper and lower body motions might not be known in advance. Our technique is the first motion (space) splicing technique that propagates temporal and spatial properties of the lower‐body locomotion to the newly generated upper‐body motion and vice versa. Whereas existing techniques only adapt the upper‐body motion to fit the lower‐body motion, our technique also adapts the lower‐body locomotion based on the upper body task for a more coherent full‐body motion. In this paper, we will show that our decoupled approach is able to generate high‐fidelity full‐body motion for interactive applications such as games.  相似文献   

18.
The human shoulder complex is perhaps the most complicated joint in the human body being comprised of a set of three bones, muscles, tendons, and ligaments. Despite this anatomical complexity, computer graphics models for motion capture most often represent this joint as a simple ball and socket. In this paper, we present a method to determine a shoulder skeletal model that, when combined with standard skinning algorithms, generates a more visually pleasing animation that is a closer approximation to the actual skin deformations of the human body. We use a data‐driven approach and collect ground truth skin deformation data with an optical motion capture system with a large number of markers (200 markers on the shoulder complex alone). We cluster these markers during movement sequences and discover that adding one extra joint around the shoulder improves the resulting animation qualitatively and quantitatively yielding a marker set of approximately 70 markers for the complete skeleton. We demonstrate the effectiveness of our skeletal model by comparing it with ground truth data as well as with recorded video. We show its practicality by integrating it with the conventional rendering/animation pipeline.  相似文献   

19.
In fluid animation, wake is one of the most important phenomena usually seen when an object is moving relative to the flow. However, in current shallow water simulation for interactive applications, this effect is greatly smeared out. In this paper, we present a method to efficiently synthesize these wakes. We adopt a generalized SPH method for shallow water simulation and two way solid fluid coupling. In addition, a 2D discrete vortex method is used to capture the detailed wake motions behind an obstacle, enriching the motion of SWE simulation. Our method is highly efficient since only 2D simulation is required. Moreover, by using a physically inspired procedural approach for particle seeding, DVM particles are only created in the wake region. Therefore, very few particles are required while still generating realistic wake patterns. When coupled with SWE, we show that these patterns can be seen using our method with marginal overhead.  相似文献   

20.
Controlling a crowd using multi‐touch devices appeals to the computer games and animation industries, as such devices provide a high‐dimensional control signal that can effectively define the crowd formation and movement. However, existing works relying on pre‐defined control schemes require the users to learn a scheme that may not be intuitive. We propose a data‐driven gesture‐based crowd control system, in which the control scheme is learned from example gestures provided by different users. In particular, we build a database with pairwise samples of gestures and crowd motions. To effectively generalize the gesture style of different users, such as the use of different numbers of fingers, we propose a set of gesture features for representing a set of hand gesture trajectories. Similarly, to represent crowd motion trajectories of different numbers of characters over time, we propose a set of crowd motion features that are extracted from a Gaussian mixture model. Given a run‐time gesture, our system extracts the K nearest gestures from the database and interpolates the corresponding crowd motions in order to generate the run‐time control. Our system is accurate and efficient, making it suitable for real‐time applications such as real‐time strategy games and interactive animation controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号