首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
靳芳芳  任丽  赵德 《电池》2016,(6):306-309
采用高温固相法制备LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,并用三氧化二铝(Al_2O_3)进行表面包覆改性。通过XRD、SEM对材料晶体结构、形貌进行分析,用恒流充放电和循环伏安等对材料进行测试。Al_2O_3包覆的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料具有典型的空间群,为R-3m的六方层状α-Na Fe O2结构。以0.2 C在2.5~4.3 V循环,Al_2O_3包覆量为1%的材料电化学性能最好,首次放电比容量可达145.7 m Ah/g,第30次循环的容量保持率为94.0%,比未包覆Al_2O_3材料在相同条件下的放电比容量提高了6.3%。  相似文献   

2.
采用共沉淀法在LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2表面包覆Al PO4。利用X射线衍射仪、扫描电子显微镜和充放电测试技术研究Al P O4包覆对正极材料的晶体结构、微观形貌和电化学性能的影响。电化学性能测试结果表明:不同Al PO4包覆量对正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2物理性质、结构及电化学性能有显著影响。当采用Al PO4包覆量为1%时,循环性能最好,50次循环后,放电比容量仅降到176 m Ah/g,容量衰减最小,只有1.7%。表现出良好的电化学稳定性,同时材料的倍率性能也明显提高。  相似文献   

3.
采用溶胶凝胶法和高温煅烧的方法对LiNi_(0.5)Co_(0.2)Mn_(0.3)O)2正极材料进行C和CeO_2双包覆改性研究,X射线衍射(XRD)测试表明包覆改性的LiNi_(0.5)Co_(0.2)Mn_(0.3)O)2材料仍维持层状结构并抑制阳离子混排。扫描电子显微镜(SEM)结果显示C包覆厚度约为5 nm,CeO_2以纳米颗粒形式沉积在材料表面。循环伏安和阻抗测试表明双包覆提高了电极材料表面稳定性与电子电导性,有利于离子的嵌入与脱嵌,从而提高了LiNi_(0.5)Co_(0.2)Mn_(0.3)O)2正极材料的电化学性能。在1 C下循环50次后的容量保持率为91.3%,10 C下首次放电比容量为108 m Ah/g。  相似文献   

4.
锂离子电池三元正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2具有可逆比容量高、成本低等优点,应用前景广阔。阐述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2的晶体结构特征及作为锂离子电池正极材料使用时的优、缺点;综述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2的制备方法及离子掺杂、表面包覆等对其电化学性能的影响;评述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2当前面临的主要问题及解决途径。  相似文献   

5.
利用共沉淀反应合成Ni_(0.5)Co_(0.2)Mn_(0.297)Al_(0.003)O_2前驱体,配锂经高温烧结(920℃-12 h)制得平均粒径为9μm的LiNi_(0.5)Co_(0.2)Mn_(0.297)Al_(0.003)O_2材料。采用液相混合与后续低温烧结(600℃-6 h)制得Li_3PO_4包覆LiNi_(0.5)Co_(0.2)Mn_(0.297)Al_(0.003)O_2材料。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、差示扫描量热法(DSC)等对材料进行分析,结果表明:均匀包覆于材料表面的Li_3PO_4不改变材料的晶体结构与形貌特征,且能显著提升材料的循环稳定性与热稳定性,LPO-0%与LPO-0.3%循环300次后容量保持率分别为94.4%与97.5%,充电态材料热分解温度分别为274.3和300.9℃。综合性能的提升证明Li_3PO_4包覆层能抑制活性物质与电解液界面副反应的发生以及材料结构的转变,提高材料的结构稳定性。  相似文献   

6.
采用化学沉淀法对共沉淀法制备的富锂锰基正极材料Li[Li_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)]O_2进行Fe_2O_3表面包覆改性。对所制备的材料进行X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、透射电子显微镜法(TEM)、X射线光电子能谱法(XPS)和电化学分析等测试和表征,分析Fe_2O_3包覆对富锂锰基正极材料的结构、形貌和电化学性能的影响。结果表明,经Fe_2O_3包覆的正极材料都具有典型的α-NaFeO_2层状结构,少许层状结构转变为尖晶石结构;Fe_2O_3包覆提高了材料的首次库仑效率和循环稳定性,Fe_2O_3包覆量质量分数为7%的Li[Li_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)]O_2呈现出的电化学性能最好,1 C下循环50次之后,容量保持率达90.16%。同时,交流阻抗结果表明Fe_2O_3包覆可有效减小材料的电荷转移阻抗并提高锂离子扩散系数。  相似文献   

7.
控制前驱体的沉淀反应条件,制备出内部疏松外部紧密的Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体。将前驱体配锂后进行高温烧结,控制烧结条件,最终合成出了内部具有大量孔隙的内多孔型LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料。X射线衍射光谱法(XRD)测试结果表明,材料有着良好的晶体结构。电性能测试表明,材料在0.2 C下首次放电比容量为175.1 mAh/g,在3 C的大倍率下放电比容量达157.3 mAh/g,倍率性能优异,且在2 C循环100次后,容量保持率达96.2%。以上结果表明,内多孔型的结构有效地提高了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的循环稳定性和倍率性能。  相似文献   

8.
以共沉淀法制备LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2为基体,通过机械球磨制备石墨烯包覆的LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2正极材料。用SEM、XRD和电化学性能测试研究材料的形貌、晶体结构和电化学性能。制备的石墨烯包覆LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2正极材料具有较好的倍率特性和循环性能:200℃热处理的1.0%石墨烯包覆样品,在3.0~4.3 V充放电,4.0 C放电比容量达到144.3 mAh/g,比基体材料提高16.1%;以1.0 C循环100次的放电比容量达到151.2 mAh/g,循环性能良好。  相似文献   

9.
分别采用硝酸铝[Al(NO_3)_3]、异丙醇铝(C_9H_(21)AlO_3)及纳米氧化铝(nano-Al_2O_3)为原料,通过不同方法对富锂层状氧化物正极材料Li_(1.15)Ni_(0.17)Co_(0.11)Mn_(0.57)O_2进行包覆改性,研究了不同铝源为原材料进行Al_2O_3包覆对Li_(1.15)Ni_(0.17)Co_(0.11)Mn_(0.57)O_2的结构和电化学性能的影响。采用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)及电化学测试等方法来表征包覆前后Li_(1.15)Ni_(0.17)Co_(0.11)Mn_(0.57)O_2材料的表面形貌和电化学性能。研究结果表明,Al(NO_3)_3为铝源的包覆提高了电池的首次比容量、循环性能及倍率性能,以C_9H_(21)AlO_3为铝源的包覆层对电池的循环性能有比较好的提升。  相似文献   

10.
采用高温固相法在相同条件下合成了LiNi_(0.6)Co_(0.1)Mn_(0.3)O_2与LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2正极材料,利用XRD、SEM表征了材料的结构与形貌,通过恒电流充放电测试、循环伏安(CV)和交流阻抗(EIS)研究了其电化学性能。结果表明,室温条件下以0.2 C倍率在3.0~4.3 V电压范围内,LiNi_(0.6)Co_(0.1)Mn_(0.3)O_2的首次放电比容量为171.8 mAh/g,1 C循环100次后容量保持率为78.5%;LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2的首次放电比容量为174.6 mAh/g,1 C循环100次后容量保持率为83.0%。CV与EIS测试表明,相比LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2,LiNi_(0.6)Co_(0.1)Mn_(0.3)O_2材料有更大的极化与电荷转移阻抗。  相似文献   

11.
采用XRD分析和充放电测试,研究氧化铝(Al_2O_3)掺杂量x对锂离子正极材料LiNi_(1/3)Co_(1/3-x)Mn_(1/3)Al_xO_2(x=0、1/40、1/20和1/10)性能的影响。当Al_2O_3掺杂量为1/20时,所得LiNi_(1/3)Co_(1/3-1/20)Mn_(1/3)Al_(1/20)O_2材料的结晶度较好且完整,混排度较低。以0.1 C在2.0~4.8 V充放电,正极材料的首次放电比容量为264.47 mAh/g,第20次循环的容量保持率为93.01%,库仑效率为98.37%。  相似文献   

12.
《电池》2020,(4)
用氢氧化亚钴[Co(OH)_2]包覆高镍三元正极材料LiNi_(0.85)Co_(0.10)Mn_(0.05)O_2,控制烧结温度,使Co(OH)_2分解为四氧化三钴(Co_3O_4)。半电池测试显示:包覆材料首次循环的放电比容量为202.4m Ah/g、库仑效率为87.7%,均高于未包覆材料。全电池测试显示:包覆材料制备的电池高温(45℃)循环性能更好,以0.50C充电、1.00C放电在2.80~4.20V循环300次,容量保持率为93.3%,而未包覆材料制备的电池为90.2%。电位滴定和SEM分析表明:包覆的Co(OH)_2在烧结过程中能与LiNi_(0.85)Co_(0.10)Mn_(0.05)O_2的表面残碱(LiOH/Li_2CO_3)反应,降低表面残碱含量。XRD测试显示:包覆材料的Ni/Li混排降低,微观应变减小。电化学阻抗谱显示:包覆材料的电荷转移阻抗降低,因此具有更好的电化学性能。  相似文献   

13.
锂离子电池正极材料LiNi_(0.80)Co_(0.15)Al_(0.05)O_2(NCA)因具有比能量高、循环稳定性与热稳定性高于高镍NCM等优点,在电动汽车等领域应用前景广阔。针对LiNi_(0.80)Co_(0.15)Al_(0.05)O_2材料制备及应用中存在的问题,综述了目前在材料结构特性研究、制备技术以及掺杂与包覆改性技术等方面的研究进展,旨在为LiNi_(0.80)Co_(0.15)Al_(0.05)O_2的产业化应用提供切实可行的解决途径。  相似文献   

14.
芦敏  韩恩山  朱令之  张广泉 《电池》2016,(4):193-196
通过共沉淀法合成了掺杂Fe元素的锂离子电池正极材料Li[Ni_(1/3)Co_((1-x)/3)Mn_(1/3)Fe_(x/3)]O_2(x=0、0.1、0.3、0.5、0.7和0.9)。用循环伏安、电化学阻抗谱(EIS)和恒流充放电等方法,研究铁、钴元素含量对材料电化学性能的影响。与三元材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2相比,少量Fe掺杂(x=0.1)的Li[Ni_(1/3)Co_(0.9/3)Mn_(1/3)Fe_(0.1/3)]O_2比容量更高,循环性能更好。以0.1 C在2.4~4.5 V恒流充放电,首次、第30次循环的放电比容量分别为168.2 mAh/g、139.1 mAh/g,容量保持率为86.02%。  相似文献   

15.
采用ZrO_2对正极材料LiNi_(0.5)Mn_(1.5)O_4进行包覆以提高材料的电化学性能,通过X射线衍射(XRD)、扫描电子显微镜(SEM)等测试手段表征ZrO_2包覆后材料的结构和形貌,通过电化学测试手段对包覆后的正极材料进行电化学性能分析,将测试结果与原相正极材料LiNi_(0.5)Mn_(1.5)O_4进行对比得到:ZrO_2包覆量为1.5%(质量分数)的样品表现出更高的放电比容量、更好的倍率性能以及更好的放电比容量保持率,在0.2 C放电倍率下材料的放电比容量首次表现可达129.5m Ah/g,在0.5 C放电倍率下经过50次循环后材料的容量保持率仍然高达95.4%;电化学循环伏安测试结果显示不同ZrO_2包覆量所制备的材料均具有4.7和4.0 V两个放电平台,材料属于Fd-3m空间群尖晶石结构。  相似文献   

16.
高坡  张彦林  颜健 《电池》2017,(6):339-342
研究球磨分散法制备的石墨烯和碳纳米管(CNT)(2∶3)复合导电剂对三元正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2性能的影响。SEM分析表明:复合导电剂均匀地分散在LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2表面,形成良好的"点-线-面"三维立体导电网络结构。电化学阻抗测试表明:复合导电剂可降低电池的内阻。充放电测试显示:在1%的低添加量下,使用复合导电剂的电池的首次放电(2.58~4.25 V,0.1 C)比容量比单独使用CNT的高7 mAh/g,比单独使用炭黑的高19 mAh/g;以10.0 C放电的比容量可达128 mAh/g,比单独使用CNT和炭黑的分别提高24 mAh/g和58 mAh/g。  相似文献   

17.
采用LiFePO_4、LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2和LiMn_(0.8)Fe_(0.2)PO_4作为复合正极材料,考察了添加碳纳米管作导电剂对电池性能的影响。研究结果表明:以LiFePO_4、LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2和LiMn_(0.8)Fe_(0.2)PO_4作为复合正极材料所制作的电池具有较好的安全性能,在正极片中添加碳纳米管作导电剂后可以提高电池的放电比容量,改善电池的低温性能和倍率充放电性能。添加碳纳米管作导电剂后的电池具有极佳的循环稳定性,3 C循环500周容量保持率为95.34%,循环1 000周容量保持率为90.09%。  相似文献   

18.
采用固相烧结法,研究不同烧结工艺以及包覆改性处理对LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2三元材料性能的影响。采用XRD、S EM、比表面积、振实密度以及电性能分析,发现以650℃/4 h→780℃/10 h进行第一次烧结后,然后在880℃/8 h复合包覆0.2%纳米级氢氧化镁和0.2%纳米级钛白粉的材料,获得最优的综合电性能,比容量可达156.2 mAh/g,1 C 3.6V放电平台为27 min,50周循环后容量衰减仅有0.93%。  相似文献   

19.
通过碳酸盐共沉淀法和固相烧结法合成了锂离子电池正极材料Li[Ni_(0.56)Co_(0.19)Mn_(0.24)](1-x)Mg_xAl_(0.01)O_2(x=0,0.025,0.05和0.075)。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学性能测试,考察了Mg~(2+)掺杂量对产物结构、形貌和电化学性能的影响。结果表明:适量Mg2+掺杂不会改变LiNi_(0.56)Co_(0.19)Mn_(0.24)Al_(0.01)O_2样品的α-NaFeO_2层状结构,并且可以提高材料在大倍率下的循环性能,LiNi_(0.546)Co_(0.185)Mn0.234Mg_(0.025)Al_(0.01)O_2具有最优的电化学性能,该样品在0.1 C下首次放电比容量为181.0 mAh/g,首次库仑效率为83.7%,在1 C下首次放电比容量为122.3 mAh/g,经过30次循环后容量保持率为98.0%。  相似文献   

20.
同时采用水杨酸钠和氨水作为络合剂,通过共沉淀控制结晶法合成了Ni_(0.80)Co_(0.15)Al_(0.05)(OH)_2前驱体,然后在750℃下烧结,制备出锂离子电池正极材料LiNi_(0.80)Co_(0.15)Al_(0.05)O_2。通过对混合硫酸盐溶液及Ni-Co-Al-C_7H_5O_3Na-NH_3-H_2O平衡体系作热力学计算分析,结果表明:在混合盐溶液中,Al~(3+)几乎完全被水杨酸根离子络合,在混合盐溶液泵入底液后,又能缓慢释放出Al~(3+)参与共沉淀反应;在共沉淀反应的最佳范围pH=10~11.5,最佳氨水浓度c(NH3)=0.1~0.3 mol/L范围内获得球形Ni_(0.80)Co_(0.15)Al_(0.05)(OH)_2前驱体,以该前躯体合成LiNi_(0.80)Co_(0.15)Al_(0.05)O_2正极材料,0.2 C首次放电比容量达175.1 mAh/g,70次循环后容量保持率为86.7%,具有优异的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号