首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用不同粒径的前驱体合成LiNi0.5Co0.2Mn0.3O2,采用X射线衍射仪(XRD)、激光粒度测试仪、粉体电阻率测定仪对合成材料的晶体结构、粒度分布、粉体电阻率进行表征,并通过倍率测试和循环测试分析粒径对材料电化学性能的影响。研究结果表明粒径较大的材料拥有更低的粉体电阻率,但倍率和循环性能较差。  相似文献   

2.
采用化学共沉淀法预先合成球形前驱体Ni0.5Co0.2Mn0.3(OH)2,再与锂源共混后高温煅烧合成高容量正极材料Li Ni0.5Co0.3Mn0.2O2。探讨了不同烧结制度对材料结构性能的影响。X射线衍射(XRD)结果表明,产物结构为α-Na Fe O2型层状结构。扫描电子显微镜(SEM)显示材料具有良好的球形形貌。测试材料的电化学性能,在2.75~4.20 V和2.75~4.35 V充放电截止电压,0.5 C充放电电流下,首次放电比容量分别为162.2和172.6 m Ah/g,循环3周后容量保持率分别为96.73%和94.62%。材料还表现出良好的倍率性能。  相似文献   

3.
综述了Li Ni0.5Mn0.5O2的研究进展。对固相合成法、共沉淀法、溶胶-凝胶法、冷冻干燥法和离子交换法等制备方法进行了介绍;提出了目前Li Ni0.5Mn0.5O2正极材料存在的一些问题,同时对Li Ni0.5Mn0.5O2正极材料发展前景进行了展望。  相似文献   

4.
选用三元材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2为正极材料,中间相炭微球为负极材料,制备了额定容量为10 Ah的铝壳锂离子动力电池,并对电池的电性能和安全性能进行了相关测试。电性能包括充放电性能、倍率性能、循环性能和自放电,实验结果表明,电池表现出了良好的倍率性能,1 C、2 C的放电容量分别为0.5 C放电容量的97.49%、93.70%;在2.7~4.2V电压范围内,电池1 C循环400次后容量保持率为101.77%;电池满电常温搁置28天后容量保持率为97.06%。针刺、短路、过充电和自有跌落测试结果表明电池具有良好的安全性能。  相似文献   

5.
以Na2CO3和NH4HCO3为混合沉淀剂的碳酸盐共沉淀法合成了LiNi0.4Co0.2Mn0.4O2,考察了煅烧温度、煅烧时间和冷却速度对合成材料电化学性能的影响。实验得出在800℃煅烧18 h,炉外冷却合成的材料电化学性能最好。合成的材料在不同截止电压2.8~4.3 V,2.8~4.4 V,2.8~4.5 V下的首次放电比容量分别为149.9、162.0、168.0 mAh/g,具有较好的电化学性能。  相似文献   

6.
以Li Ni0.5Co0.2Mn0.3O2和Li Mn0.7Fe0.3PO4混合材料为正极活性物质、人造石墨为负极活性物质,制备锂离子电池。两种正极材料均为球形,粒径分布相近,D50分别为7.93μm和7.21μm。差示扫描量热测试结果表明:混合正极的热分解温度较高(263℃)且放热量小。分别以Li Ni0.5Co0.2Mn0.3O2、Li Mn0.7Fe0.3PO4和两者质量比为78∶22的混合材料制备电池,以1 C在3.0~4.2 V充放电,循环300次的容量保持率分别为92.8%、97.0%和97.6%。混合正极电池2 C倍率放电容量保持率为94.0%,在针刺和过充等测试过程中不起火、不爆炸。  相似文献   

7.
以Mn3O4为原料,在氧气气氛中用固相反应法制备尖晶石结构正极材料LiNi0.5Mn1.5O4,并用X射线衍射(XRD)、扫描电镜(SEM)和恒流充放电测试考察了反应温度、反应时间和锂用量等工艺条件对合成产物的结构、微观形貌和电化学性能的影响。结果表明通过控制工艺条件可以优化材料的电化学性能,其中锂用量为1.02,在900℃反应2h所合成LiNi0.5Mn1.5O4具有Fd3m尖晶石结构,放电比容量为140mAh/g、40次循环后容量保持率为94.8%。  相似文献   

8.
《电池》2020,(3)
以商用LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/石墨电池为对象,研究锂离子电池在高温(45℃)下的失效机理。SEM-能量散射谱(EDS)、XRD、电化学阻抗谱(EIS)、电感耦合等离子体发射光谱(ICP-OES)、拉曼光谱和扣式电池测试结果表明:石墨负极表面的固体电解质相界面(SEI)膜持续生长,消耗大量活性Li~+,是失效的主要原因;正极活性材料颗粒破裂,过渡金属元素镍、钴和锰等的溶解析出,负极材料脱落沉积在隔膜上,堵塞小孔,是失效的次要原因。  相似文献   

9.
《电池》2020,(1)
在25℃和5℃下对18650型LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2(NCM523)/石墨电池进行循环性能测试,拆解容量保持率分别为100%和80%的(放电态)电池,用SEM、能量散射谱(EDS)、X射线光电子能谱(XPS)和XRD分析,研究石墨负极的形貌、组成和结构,用电感耦合等离子光谱(ICP)测试电解液中过渡金属元素的含量。在25℃下循环,负极表面固体电解质相界面(SEI)膜约161 nm厚,无明显析锂,电解液中w(Ni)约为6.0×10~(-4)%,w(Co)和w(Mn)小于1.0×10~(-4)%;而在5℃下循环,负极表面SEI膜约28 nm厚,有明显的锂枝晶析出,电解液中w(Ni)、w(Co)和w(Mn)分别约为7.1×10~(-3)%、1.3×10~(-3)%和2.0×10~(-3)%。与25℃下负极表面SEI膜生长增厚不同,低温时负极表面会有大量锂枝晶析出,并有过渡金属元素沉积。  相似文献   

10.
采用Sol-Gel法和共沉淀法成功合成了尖晶石LiNi_(0.5)Mn_(1.5)O_4材料,通过X射线衍射(XRD)、扫描电子显微镜(SEM)以及电化学测试对不同合成方法对材料性能的影响进行表征。结果表明制备方法对材料的结构、形貌以及电化学性能具有较为重要的影响。  相似文献   

11.
尖晶石结构正极材料LiNi_(0.5)Mn_(1.5)O_4因具有理论比容量高、比能量大、放电平台高(~4.7 V)、价格低廉等优点而备受关注。但该材料循环性能和倍率性能不佳,制约着材料的推广应用。主要综述通过掺杂、包覆、形貌控制等手段来提高该材料电化学性能的最新研究进展,旨在为提升该材料性能的相关研究提供参考。  相似文献   

12.
采用球形Ni0.5Co0.2Mn0.3(OH)2前驱体与Li2CO3混合,通过高温烧结合成层状Li Ni0.5Co0.2Mn0.3O2正极材料,研究了合成时间对材料结构及电化学性能的影响。扫描电子显微镜法(SEM)表明Li Ni0.5Co0.2Mn0.3O2正极材料与前驱体形貌均为理想的球形。X射线衍射光谱法(XRD)分析表明,在不同合成时间下合成的样品均为具有层状结构的纯相物质。电化学性能测试表明,900℃12 h合成的样品具有最优的电化学性能,在2.7~4.4 V电压区间,0.1 C、1 C、5 C的首次放电比容量分别达到195.2、158.4和114.9 m Ah/g,1 C循环10次容量保持率为98.9%。  相似文献   

13.
锂离子电池三元正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2具有可逆比容量高、成本低等优点,应用前景广阔。阐述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2的晶体结构特征及作为锂离子电池正极材料使用时的优、缺点;综述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2的制备方法及离子掺杂、表面包覆等对其电化学性能的影响;评述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2当前面临的主要问题及解决途径。  相似文献   

14.
通过高温固相法合成了层状三元LiNi0.5Co0.2Mn0.3O2阴极材料,考察了烧结温度和锂过量的微小差别对电极性能的影响。扫描电子显微镜实验证实当烧结温度高于980℃时,合成的样品棱角分明,而在950℃以下合成的样品主要是球形。随着循环的进行,对于在900和930℃合成的样品,放电容量几乎成线性降低;当合成温度高于980℃时,随着循环的进行放电容量呈S型变化。900℃合成的样品初始比容量为170 mAh/g左右(循环窗口3.0~4.3 V),100次以后比容量为140 mAh/g。锂过量6%(摩尔分数)时综合性能较好。  相似文献   

15.
通过固相法制备了掺杂Pr的锂离子电池正极材料Li[Ni0.5Co0.2Mn0.3](1-x)PrxO2(x=0、0.01、0.02、0.03和0.05)。用XRD、SEM、充放电测试、循环伏安测试等研究Pr掺杂对材料结构及电化学性能的影响。适量的掺杂不会改变材料的晶体类型,还能减轻阳离子混排,稳定层状结构。在0.1 C(20 m A/g)下,x=0.02样品的首次放电比容量为186.9 m Ah/g,在5.0 C下循环100次后,容量保持率高达94.9%。  相似文献   

16.
控制前驱体的沉淀反应条件,制备出内部疏松外部紧密的Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体。将前驱体配锂后进行高温烧结,控制烧结条件,最终合成出了内部具有大量孔隙的内多孔型LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料。X射线衍射光谱法(XRD)测试结果表明,材料有着良好的晶体结构。电性能测试表明,材料在0.2 C下首次放电比容量为175.1 mAh/g,在3 C的大倍率下放电比容量达157.3 mAh/g,倍率性能优异,且在2 C循环100次后,容量保持率达96.2%。以上结果表明,内多孔型的结构有效地提高了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的循环稳定性和倍率性能。  相似文献   

17.
用共沉淀法制备前驱体Ni0.5Co0.2Mn0.3(OH)2,焙烧前驱体与Li2CO3制备Li Ni0.5Co0.2Mn0.3O2。用XRD、SEM和DSCTGA分析焙烧中间产物的结构、形貌及变化,探索制备Li Ni0.5Co0.2Mn0.3O2的机理。随着焙烧温度的升高,前驱体分解成(Ni0.5Co0.2Mn0.3)3O4,随后Li2CO3参与反应,形成Li Ni0.5Co0.2Mn0.3O2。Li Ni0.5Co0.2Mn0.3O2的生成在650℃时结束,但层状结构在900℃时才趋于完美。  相似文献   

18.
杨尘  汪涛  王金龙  熊明松 《电池》2018,(1):45-48
采用LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2三元正极材料匹配钛酸锂(Li_4Ti_5O_(12))负极材料,制备8 Ah软包装锂离子电池,注液前分别烘烤24 h和36 h,电芯水分约为0.030%和0.015%,研究水分对电池高温性能的影响。与水分0.015%的电池相比,水分0.030%的电池首次库仑效率较低,极化明显。在55℃下高温搁置7 d后,电池容量保持率和恢复率结果显示:水分0.030%的电池为98.5%和99.4%,而水分0.015%的电池为99.5%和100.1%,均高于0.030%水分的电池;55℃下3 C循环(1.5~2.7 V)第2 000次时,0.030%和0.015%水分的电池容量保持率分别为87.8%和89.4%。较低的水分可提高电池在高温下的搁置和循环性能。  相似文献   

19.
《电池》2020,(3)
简述LiNi_(0.5)Mn_(1.5)O_4的合成方法,如固相法、共沉淀法和水热法等,详细综述LiNi_(0.5)Mn_(1.5)O_4正极材料的体相掺杂和表面包覆改性对电荷转移电阻、扩散系数的影响,以及电化学性能的改善作用。指出LiNi_(0.5)Mn_(1.5)O_4正极材料目前需要解决的结构不稳定、易与电解液发生副反应等问题,并指出研究的方向:掺杂和包覆。  相似文献   

20.
以Y_2O_3和Al_2O_3溶胶为包覆前驱物,对LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2进行了表面包覆改性。X射线衍射光谱法(XRD)测试表明,Y_2O_3/Al_2O_3包覆并未影响LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2的晶体结构,仍为良好的a-NaFeO_2层状结构。扫描电子显微镜法(SEM)测试表明,氧化物在正极材料表面均匀分布。与未包覆LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2相比,3.0~4.4 V测试电压下,Y_2O_3/Al_2O_3包覆后的容量保持率提高了约15%。CV和EIS测试表明,Y_2O_3/Al_2O_3包覆后LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2的极化和电荷转移电阻明显减小,有效降低了电解液与正极材料的副反应,提高了电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号