首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
以柠檬酸为络合剂,采用溶胶凝胶法制备钠离子电池正极材料Na_3V_2(PO_4)_3。借助XRD、SEM等测试手段对样品的结构和形貌进行了深入分析,借助电化学测试手段对材料电化学性能进行了测试。结果表明:材料在750℃下保温8 h时,材料晶格发育良好。结晶度高的正极材料,在2.5~4.0 V电压下以0.2 C电流充放电,首次放电比容量达到107mAh/g,首次不可逆容量占比为1.29%,经过150次循环后,比容量保持在97.1 mAh/g,容量衰减为90.75%。  相似文献   

2.
以硝酸盐为原料,用溶胶-凝胶法合成锂离子电池正极材料LiNi0.8-xCo0.2AlxO2(x=0.01,0.03,0.05,0.07),采用XRD、SEM和电化学测试等方法对材料的物理化学性质以及电化学性能进行表征。结果表明,经过Al掺杂后,材料具有较高的初始放电比容量和容量保持率。在750℃下合成的LiNi0.77Co0.2Al0.03O2在3.0~4.2V,以0.2C恒电流充放电测试,其首次放电容量为164.9mAh/g,经过50次充放电循环后放电容量为149.5mAh/g,可逆容量的保持率为90.66%。  相似文献   

3.
郭宇  黄玲  肖方明  王英  唐仁衡 《电源技术》2020,(1):13-16,65
采用共沉淀法合成Li[(Ni0.88Co0.12)0.90(Ni0.80Co0.15Al0.05)0.10]O2正极材料,通过调控Ni、Co、Al元素在材料内部形成梯度分布来提升材料的稳定性,采用X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电子探针(EPMA)及电化学测试等方法对材料性能进行表征。结果表明:三元正极材料具有良好的层状结构,Ni、Co和Al元素呈梯度分布。以0.2 C进行充放电,首次放电比容量为191.2 mAh/g,以0.2 C充1 C放电循环100次,电池比容量由174.4 mAh/g下降到111.1 mAh/g,容量保持率为63.7%。  相似文献   

4.
正极材料Li_3V_(2-x)Cr_x(PO_4)_3/C的制备及性能   总被引:1,自引:0,他引:1  
用溶胶-凝胶法制备了锂离子电池正极材料Li3V2-xCrx(PO4)3/C(x=0,0.05、0.10和0.20).用XRD、SEM、充放电、循环伏安和电导率测试等方法,研究了Cr掺杂对样品的影响.样品均为单相,尽管在低倍率(0.2 C)下的初始比容量随着x的增加而下降,但适量的Cr掺杂可改善循环及倍率性能.Li3V1.90Cr0.10(PO4)3/C以0.2 C和4.0 C充放电的首次放电比容量分别为171.4 mAh/g和130.2 mAh/g,第100次循环时的容量保持率分别为78.6%和88.9%.  相似文献   

5.
将通过化学共沉淀法合成的Ni_(0.7)Co_(0.1)Mn_(0.2)(OH)_2三元前驱体与锂源LiOH·H_2O混合均匀,用高温固相反应法合成LiNi_(0.7)Co_(0.1)Mn_(0.2)O_2三元正极材料。采用XRD、SEM、恒电流充放电电池测试系统和电化学工作站对高温烧结合成的三元正极材料的晶体结构、颗粒形貌和电化学性能进行研究。结果表明,在850℃下高温煅烧合成的LiNi0.7Co0.1Mn0.2O2材料具有最优的组织结构、微观形貌和电化学性能。0.2 C倍率下首次放电比容量达到191.5 mAh/g,1.0 C倍率下循环50圈后的放电比容量为178.3 mAh/g,容量保持率达96.5%。  相似文献   

6.
以化学共沉淀法制备出的球形Ni0.5Co0.3Mn0.2CO3前驱体,合成了振实密度高达2.60 g/cm3的球形正极材料LiNi0.5Co0.3Mn0.2O2.研究表明,LiNi0.5Co0.3Mn0.2O2为10 μm左右的球形粉体,为纯相的α-NaFeO2层状结构.在2.7~4.3V,0.2 C倍率进行充放电,LiNi0.5Co0.3Mn0.2O2的首次放电比容量170.2 mAh/g,50次循环后容量保持率为94.3%;在2.7~4.6 V,在0.2 C倍率下放电,首次放电比容量为191.8 mAh/g,循环50次后容量保持率为90.5%.LiNi0.5Co0.3Mn0.2O2的首次循环伏安测试结果和交流阻抗测试结果进一步表明材料具有良好的电化学性能.  相似文献   

7.
以金属硫酸盐为原料、Na_2CO_3为沉淀剂、NH_3·H_2O为络合剂,采用共沉淀结合高温烧结法合成锂离子电池正极材料Li_(1.2)Ni_(0.2)Mn_(0.6)O_2。XRD、SEM和电化学性能测试结果表明:在800℃下烧结10 h可获得颗粒分布均匀、层状结构明显且电化学性能良好的产物。在2.0~4.8 V充放电,电流为30 mA/g时的最高放电比容量为247.4 mAh/g;电流为300 mA/g时,首次和第50次循环的放电比容量分别为199.3 mAh/g、190.4 mAh/g。  相似文献   

8.
采用共沉淀法合成了球形Ni0.13Co0.13Mn0.54(OH)1.6前驱体,与锂结合生成Li1.2Ni0.13Co0.13Mn0.54O2正极材料。采用X射线衍射(XRD)、电子扫描电镜(SEM)、循环伏安测试(CV)、交流阻抗测试(EIS)和充放电测试对Li1.2Ni0.13Co0.13Mn0.54O2正极材料进行了表征。结果表明,所合成的材料具有球形形貌,粒度分布均匀,振实密度达2.1 g/cm3,材料0.2 C首次放电比容量280.9 mAh/g,1 C首次放电比容量237.1 mAh/g,循环50次后1 C容量保持率92.5%,表现出优异的电化学性能。  相似文献   

9.
采用溶胶凝胶法制备尖晶石型高电压正极材料LiNi_(0.5)Mn_(1.5)O_4,并掺杂F-与之对比。分别采用X射线衍射仪、电子扫描显微镜、热重分析仪、电化学工作站和充放电测试仪对合成材料的物相、形貌和电化学性能进行表征。结果表明,0.5C倍率下LiNi_(0.5)Mn_(1.5)O_4首次放电比容量高达141.6 mAh/g,接近于理论比容量146.7 mAh/g。提高倍率40次循环后,5C比容量仍有111.8 mAh/g,而F-掺杂样品仅有92 mAh/g。然后从5C返回到1C,比容量为129.9 mAh/g,与1C初始容量相比,容量保持率高达96.4%,LiNi_(0.5)Mn_(1.5)O_4显示出更加优异的倍率循环性能。  相似文献   

10.
牛少军  陈猛  蒲俊红 《电池工业》2007,12(6):403-407
采用溶胶-凝胶法合成了尖晶石型LiMn2O4及其掺杂改性的LiCo0.025M0.025Mn1.95O4(M=Mg,Cr,Ni)正极材料。通过X射线衍射对材料的晶体结构进行了分析,通过恒电流充放电、循环伏安和电化学阻抗测试技术对材料的电化学性能进行了测试。实验结果表明,所制备的材料LiMn2O4和LiCo0.025M0.025Mn1.95O4(M=Mg,Cr,Ni)均具有良好的尖晶石结构,其中材料LiCo0.025Ni0.025Mn1.95O4的电化学性能最佳。以0.2C倍率循环充放电,首次放电比容量可达119.94mAh/g,50次循环后放电比容量仍保持在117.78mAh/g以上,容量保持率为98.20%。  相似文献   

11.
以泡沫镍为集流体,AB5合金和活性炭分别配制浆料,分层涂浆制备表层涂炭的AB5电极。用恒流充放电、电化学阻抗、线性极化和循环伏安等测试对电极进行分析。表层涂炭可改善AB5电极的电化学性能,以0.2 C在1.0~1.5 V充放电,放电比容量为292.6 mAh/g,循环100次的容量保持率为95.90%,以1 500 mAh/g的电流放电时,高倍率放电性能为82.5%,相比于未表层涂炭的AB5电极,分别提高了1.6 mAh/g、5.52%和20.92%。  相似文献   

12.
采用草酸盐共沉淀法制备了锂离子电池用稀土元素镧掺杂层状正极材料LiNi1/3Co1/3-xLaxMn1/3O2(0x1),考察了镧掺杂对其结构与电化学性能的影响。XRD与电化学性能测试结果表明,层状正极材料LiNi1/3Co1/3-0.04La0.04Mn1/3O2具有较好的层状结构和综合电化学性能。表征阳离子的混排程度的峰强比I(003)/I(104)=1.2491.2,表示六角晶格的有序性的R因子R=0.5。在2.8~4.2 V(vs.Li/Li+)电压范围,0.1 C倍率的首次放电比容量为147.56 mAh/g,首次充放电效率为94%,0.2 C倍率循环20次后继续以0.5 C倍率循环20次的可逆比容量为141.7 mAh/g,为首次放电比容量的96.0%。SEM结果表明,颗粒平均粒径约1.2 mm,形状近似于球形。  相似文献   

13.
直流刻蚀铝集流体对LiCoO2正极性能的影响   总被引:2,自引:2,他引:0  
利用扫描电子显微镜、恒流充放电、循环伏安及交流阻抗等方法,研究了直流刻蚀铝集流体及对锂离子电池LiCoO2正极性能的影响。经直流刻蚀后的铝集流体表面形成均匀的蜂窝状结构,使活性材料与之相互"啮合",正极首次放电比容量由138.1 mAh/g升高到146.2 mAh/g,循环稳定性、电化学阻抗等性能得到了改善。  相似文献   

14.
LiNi0.77Al0.03Co0.2O2正极材料研究   总被引:4,自引:3,他引:1  
顾健  顾大明  史鹏飞 《电池》2004,34(3):171-172
采用液相共沉淀法,得到LiNi0.77Al0.03Co0.2O2正极材料,对材料进行结构和电化学性能测试.研究发现:该材料的电化学性能比LiNiO2有很大的提高,其首次充放电比容量分别为175 mAh/g和168 mAh/g,首次充放电效率为96.4%,30次循环后放电容量保持在167 mAh/g,循环效率达到98.5%以上.  相似文献   

15.
蔡铖  张海燕  付海阔  肖方明 《电源技术》2021,45(12):1529-1532
采用高温固相法在不同条件下合成了一系列球形LiNi0.8Co0.1Mn0.1O2正极材料,并通过XRD、SEM、TEM、EDS等表征手段对其物相结构、形貌以及电化学性能进行了研究.结果表明,Li/Me(摩尔比)为1.07时合成的正极材料结晶良好,结构稳定,以0.2 C倍率在2.8~4.3 V电压范围内的首次放电比容量为200.4 mAh/g,首次充放电效率为86.7%,1 C放电比容量为189.5 mAh/g,50次循环之后的放电比容量为178.3 mAh/g,此时容量保持率高达94.1%.继续循环至100次比容量还有145.7 mAh/g,容量保持率为76.9%.  相似文献   

16.
利用扫描电子显微镜、恒流充放电、循环伏安及交流阻抗等方法研究了直流刻蚀铝集流体及对锂离子电池LiFePO_4正极性能的影响。经直流刻蚀后的铝集流体表面形成均匀的蜂窝状结构,使活性材料与之相互"啮合",LiFePO_4正极0.2 C和2 C首次放电比容量分别由133和87 mAh/g升高到139和120 mAh/g,循环稳定性、电化学阻抗等性能得到了改善。  相似文献   

17.
陈灵谦 《电池》2007,37(2):107-108
采用碳热还原法制备了Li3V2(PO4)3锂离子电池正极材料,通过XRD、循环伏安和充放电测试对样品的性能进行了研究.结果表明:所合成的Li3V2(PO4)3样品属于单斜晶系;样品(850℃,16 h)以0.2 C倍率充放电,首次充放电容量分别是129 mAh/g和121 mAh/g;循环30次后,放电容量为104 mAh/g.  相似文献   

18.
采用溶胶凝胶法的新型自聚物裂解工艺合成5 V锂离子电池LiNi_(0.5)Mn_(1.5)O_4正极材料,经XRD、SEM和充放电循环测试,合成材料具有尖晶石结构,粒径大小分布均匀,在0.2 C充放电下首次放电比容量达到141 mAh/g,循环100次容量保持率为93%,与其它溶胶凝胶法的柠檬酸乙二醇工艺和高分子PAA工艺合成材料相比,电化学性能良好。  相似文献   

19.
以共沉淀法制备LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2为基体,通过机械球磨制备石墨烯包覆的LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2正极材料。用SEM、XRD和电化学性能测试研究材料的形貌、晶体结构和电化学性能。制备的石墨烯包覆LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2正极材料具有较好的倍率特性和循环性能:200℃热处理的1.0%石墨烯包覆样品,在3.0~4.3 V充放电,4.0 C放电比容量达到144.3 mAh/g,比基体材料提高16.1%;以1.0 C循环100次的放电比容量达到151.2 mAh/g,循环性能良好。  相似文献   

20.
湿法球磨制备LiCo_(1/3)Mn_(1/3)Ni_(1/3)O_2材料及表征   总被引:1,自引:1,他引:0  
以六水合硝酸镍、硝酸钴和二氧化锰为原料,以柠檬酸为分散剂和燃料,采用球磨工艺对原料进行混合,在950℃于空气气氛中保温10 h制备了层状结构的LiCo_(1/3)Mn_(1/3)Ni_(1/3)O_2正极材料.通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)和电化学性能测试手段对所制备材料的结构、形貌及电化学性能进行表征.结果表明:所合成的材料为单相的六方层状结构,颗粒大小均匀.在2.75~4.3 V电压区间,以0.1 C恒电流充放电,首次充/放电比容量为184.3/156.7mAh/g,充/放电效率为85%.0.5 C倍率下充放电,材料首次放电比容量为151.3 mAh/g,经过30次循环后比容量保持在1 50.8 mAh/g左右,循环性能优异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号