首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
对AZ80Ce镁合金试样进行了锻造,研究了锻造温度对试样显微组织和力学性能的影响。结果表明:随始锻温度增大,试样的平均晶粒尺寸和断后伸长率先减小后增大,强度先增大后减小。与370℃始锻温度相比,400℃始锻温度使试样的平均晶粒尺寸和断后伸长率分别减小了47%和16.2%,抗拉强度和屈服强度分别增大了8.9%和12.8%;与270℃终锻温度相比,290℃终锻温度使试样的平均晶粒尺寸和伸长率分别减小了40%和14.2%,抗拉强度和屈服强度分别增大了5.8%和9.9%。汽车车轮用AZ80Ce镁合金的始锻温度和终锻温度分别优选为400、290℃。  相似文献   

2.
为改善和优化汽车用镁合金的组织和力学性能,采用不同的始锻温度和终锻温度对汽车用镁合金进行了显微组织试验和力学试验,并进行了组织和力学性能的测试与分析。结果表明:随始锻温度从380℃升高至480℃、终锻温度从320℃升高至400℃,试样的平均晶粒尺寸和断后伸长率先减小后增大,抗拉强度和屈服强度先增大后减小;与380℃始锻相比,440℃始锻时合金的抗拉强度和屈服强度分别增大44和42 MPa;与320℃终锻相比,360℃终锻时合金的抗拉强度和屈服强度分别增大37和30 MPa。当始锻温度为440℃、终锻温度为360℃时,显微组织得到极大改善。汽车用镁合金的始锻温度和终锻温度分别优选为440和360℃。  相似文献   

3.
采用不同的锻造工艺对汽车轮毂用AZ80Ce0.5镁合金进行了试验,并进行了显微组织和磨损性能的测试与分析。结果表明:随着始锻温度、终锻温度的增加,试样的平均晶粒尺寸先减小后增大、耐磨损性能先提升后下降。AZ80Ce0.5镁合金锻造工艺参数优选为始锻温度420℃、终锻温度300℃。与360℃始锻温度相比,420℃始锻温度的试样平均晶粒尺寸减小2.6μm、磨损体积减小39%;与260℃终锻温度相比,当300℃终锻温度时试样的平均晶粒尺寸减小2.4μm、磨损体积减小35%。  相似文献   

4.
为了研究锻压态AZ80汽车轮毂用镁合金的显微组织和力学性能,采用不同的始锻温度和终锻温度进行了合金的锻压试验,并进行了显微组织和室温力学性能的测试与分析。结果表明,当始锻温度为430~510℃、终锻温度为320~400℃时,始锻温度和终锻温度对AZ80汽车轮毂用镁合金的抗拉强度和屈服强度影响较大,对断后伸长率影响较小。合金锻压时的始锻温度和终锻温度分别优选为470和360℃。采用优选的始锻温度和终锻温度时,锻压态AZ80汽车轮毂用镁合金的平均晶粒尺寸达到最小值11.4μm、抗拉强度达到最大值386 MPa、屈服强度达到最大值287 MPa。  相似文献   

5.
采用不同的坯料加热温度、模具温度和锻比对汽车用AZ80镁合金棒材进行了锻造,并进行了不同温度下的力学性能测试与分析。结果表明,随坯料加热温度从440℃提高至480℃或锻比从5增大至9,棒材的抗拉强度、屈服强度和断后伸长率均先增大后减小;随模具温度从320℃提高至360℃,棒材的抗拉强度和屈服强度均先增大后减小,断后伸长率先增大后基本不变。坯料加热温度优选为470℃、模具温度优选为350℃、锻比优选为8。  相似文献   

6.
在锻比不变的情况下,采用不同锻造温度进行了AZ80Ce汽车轻合金的锻造,并进行了显微组织和力学性能的测试与分析。结果表明,随始锻温度从300℃提高至450℃或终锻温度从300℃提高至350℃,锻件的平均晶粒尺寸均先减小后增大,力学性能先提高后下降。始锻温度优选为425℃、终锻温度优选为330℃;在该优选工艺参数下锻件的抗拉强度、屈服强度和断后伸长率均达到最大值,分别为384 MPa、274 MPa、14.9%。  相似文献   

7.
采用不同的始锻温度和终锻温度对7075-0.5%V铝合金机械盘件进行了锻造,并进行了试样力学性能和耐磨损性能的测试、比较和分析。结果表明:在始锻温度440~520℃、终锻温度340~420℃,随始锻温度和终锻温度的升高,试样的抗拉强度和屈服强度先增大后减小,断后伸长率变化幅度很小,磨损体积先减小后增大,磨损性能先提升后下降。7075-0.5%V新型铝合金机械盘件的锻造工艺参数优选为:480℃始锻温度、380℃终锻温度。  相似文献   

8.
采用不同的始锻温度和终锻温度对新型含铌汽车钛合金棒材进行锻造试验,并进行了力学性能测试与分析。结果表明:随始锻温度从970℃增加到1090℃、终锻温度从900℃增加到980℃,新型含铌汽车钛合金棒材的抗拉强度、屈服强度先增大后减小,断后伸长率变化幅度不大,其力学性能先提升后下降。与970℃始锻温度锻造时相比,1030℃始锻温度处理的新型含铌汽车钛合金棒材的抗拉强度和屈服强度分别增大了121和127 MPa,断后伸长率减小了1.6%;与900℃终锻温度锻造时相比,960℃终锻温度处理的新型含铌汽车钛合金棒材的抗拉强度和屈服强度分别增大了100和143 MPa,断后伸长率减小了1.4%。新型汽车含铌钛合金棒材的锻造工艺参数优选为:始锻温度1030℃、终锻温度960℃。  相似文献   

9.
泡沫镁改性铝合金是一种极具应用前景的锻压机床用铝合金。在锻造过程中,如何优选变形量和始锻温度至关重要。采用不同的锻压工艺参数(变形量和始锻温度)生产了锻压机床改性铝合金试样,并进行了显微组织和力学性能的测试与分析。结果表明,合金的抗拉强度和屈服强度随锻造变形量的增加而增加,断后伸长率则先增大后减小;合金的抗拉强度、屈服强度和断后伸长率均随始锻温度的提高而先增大后减小。锻压机床改性铝合金的变形量优选为15%、始锻温度优选为450℃。  相似文献   

10.
采用不同的始锻温度和终锻温度进行了6A02-0.5Cr铝合金机械铰链的锻造,并进行了力学性能和耐腐蚀性能的测试分析.结果 表明:随始锻温度和终锻温度的增加,试样的抗拉强度先增大后减小,断后伸长率和质量损失率先减小后增大,耐腐蚀性能先提升后缓慢下降.和450℃始锻温度的性能相比,始锻温度480℃锻造时试样的抗拉强度增大1...  相似文献   

11.
宋佳娜  路琴 《热加工工艺》2021,(9):105-108,112
采用不同的始锻温度和终锻温度对Mg-8Al-0.6Zn-0.3Ti-0.3 In镁合金试样进行了锻压,并进行了力学性能和腐蚀性能的测试和分析.结果 表明:随始锻温度和终锻温度的升高,试样力学性能和腐蚀性能均先提高后下降.与420℃始锻温度相比,480℃始锻温度下试样的的抗拉强度和屈服强度分别增大34、24 MPa,断后...  相似文献   

12.
对汽车用镁合金挤压过程进行了自适应PID控制前后的对比,并进行了显微组织和力学性能的测试与分析。结果表明:与自适应PID控制前相比,控制后的挤压态AZ80、AZ31镁合金试样平均晶粒尺寸减小,抗拉强度和屈服强度增大,断后伸长率略有减小,镁合金的显微组织和力学性能均得到了提高。  相似文献   

13.
以不同的等温锻造温度和变形量成形了6082-0.5Ti新型铝合金件,并进行了力学性能和显微组织的测试与分析。结果表明,与420℃等温锻造相比,采用480℃等温锻造的试样抗拉强度和屈服强度分别增大29 MPa和26 MPa,断后伸长率减小1.6%,平均晶粒尺寸减小5.7μm;与变形量40%相比,采用60%变形量锻造的试样抗拉强度和屈服强度分别增大25 MPa和19 MPa,断后伸长率减小1.8%,平均晶粒尺寸减小6.1μm。6082-0.5Ti铝合金的等温锻造温度和变形量分别优选为480℃和60%。  相似文献   

14.
戚勇  姜一达 《热加工工艺》2022,(3):112-114,121
采用不同的锻压温度进行了汽车用AZ80-CeTi镁合金试样的挤锻复合成形,并进行了拉伸性能及冲击性能的测试与分析.结果 表明:随锻压温度的升高,挤锻复合成形试样的抗拉强度、屈服强度、冲击吸收功均先逐渐增大后缓慢减小,断后伸长率先减小后增大.和320℃锻压的结果相比,380℃锻压温度下的抗拉强度、屈服强度、冲击吸收功分别...  相似文献   

15.
采用不同的挤压温度和挤压速度进行了车身用AZ80镁合金的挤压试验,进行了显微组织、织构和力学性能的测试与分析。结果表明:在试验条件下,AZ80镁合金的平均晶粒尺寸、织构最大值先增大后减小,力学性能先减小后增大。与320℃挤压相比,360℃挤压时镁合金平均晶粒尺寸减小39%,织构最大值减小41%,抗拉强度和屈服强度分别增大16%、21%。与1 m/min速度挤压相比,3.5 m/min速度挤压时镁合金平均晶粒尺寸减小37%,织构最大值减小23%,抗拉强度和屈服强度分别增大13%、18%。挤压温度优选为360℃、挤压速度优选为3.5 m/min。  相似文献   

16.
采用不同的静置温度对Mg-6Al-2Sn铸态镁合金进行了试验,并进行了显微组织和力学性能的测试与分析。结果表明:随静置温度从650℃升高至770℃,试样的平均晶粒尺寸先减小后增大,抗拉强度和屈服强度先增大后减小,断后伸长率变化不大;与650℃静置温度处理时相比,710℃静置处理时的Mg-6Al-2Sn铸态镁合金的平均晶粒尺寸减小了55μm(167→112μm),抗拉强度和屈服强度分别增大了35 MPa(173→208MPa)和18 MPa(124→142MPa)。Mg-6Al-2Sn铸态镁合金的静置温度优选为710℃。  相似文献   

17.
为了研究挤压温度对汽车用Mg-Al-Zn-Ti新型镁合金组织和性能的影响,分别采用5种挤压温度进行了汽车用Mg-AlZn-Ti新型镁合金的挤压试验,并进行了显微组织和力学性能的测试和分析。结果表明:随着挤压温度从230℃增至350℃,合金的平均晶粒尺寸先减小后增大,其抗拉强度和屈服强度均呈现先升高后降低的变化趋势,而断后伸长率在较小变化范围内呈现先降低后升高的变化趋势。挤压温度为320℃时,合金的晶粒尺寸降至最小,其力学性能表现最佳,较230℃挤压时平均晶粒尺寸减小约9μm,抗拉强度和屈服强度分别增大31和32 MPa。因此,汽车用Mg-Al-Zn-Ti新型镁合金的挤压温度优选为320℃。  相似文献   

18.
采用不同的始锻温度、终锻温度和锻压速度对汽车转向节进行了锻造,并进行了拉伸性能和冲击性能的测试与分析。结果表明:随始锻温度从1050℃增大到1200℃或终锻温度从880℃增大到1040℃,汽车转向节的抗拉强度、屈服强度不断增大,而断后伸长率和冲击吸收功不断减小;随锻压速度从60 mm/s增加至300 mm/s,汽车转向节的抗拉强度、屈服强度先增大后减小,而断后伸长率和冲击吸收功先减小后增大。汽车转向节合理的始锻温度、终锻温度和锻压速度分别为1175℃、960℃、180 mm/s。  相似文献   

19.
采用不同的挤压温度对汽车零件用Mg-8Al-3Sn-0.5V镁合金试样进行了挤压试验,并进行了力学性能和显微组织的测试与分析。结果表明:随挤压温度的升高,试样的抗拉强度、屈服强度先增大后减小,断后伸长率先减小后增大。在340℃挤压后,试样的抗拉强度、屈服强度最大,断后伸长率最小。汽车零件用Mg-8Al-3Sn-0.5V镁合金试样的挤压温度优选340℃。  相似文献   

20.
采用不同的始锻温度、终锻温度对汽车用2A50-0. 5V-0. 3Sr新型铝合金试样进行了锻造成型,并对锻件的力学性能和热疲劳性能进行测试和分析。结果表明:480℃始锻温度、360℃终锻温度锻造的合金抗拉强度最高,断后伸长率、主裂纹平均长度和主裂纹平均宽度最小,力学性能和热疲劳性能最佳。与420℃始锻温度锻造相比,480℃始锻温度合金的抗拉强度增大了31 N/mm~2,主裂纹平均长度和主裂纹平均宽度分别减小了12μm、13μm,断后伸长率减小幅度较小;与320℃终锻温度合金相比,360℃终锻温度合金的抗拉强度增大了35 N/mm2,主裂纹平均长度和主裂纹平均宽度分别减小了15μm、14μm,断后伸长率减小幅度较小。汽车用2A50-0. 5V-0. 3Sr铝合金的锻造温度优选为:480℃始锻温度、360℃终锻温度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号