首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
钟国彬  刘新天  何耀  杨亚飞  苏伟 《电源技术》2016,(12):2407-2410
变电站用铅酸蓄电池组在核容时的单体电压下降率与浮充时的内阻均值与铅酸电池组的健康状态(SOH)有明显关系。通过分析核容和浮充状态对SOH的影响权重大小,分别建立了浮充时内阻均值及核容时单体电压下降率与SOH的关系模型,从而提出了一种基于融合模型的变电站用铅酸电池SOH估计算法。该算法针对变电站用铅酸电池组实际工况设计,针对性强,并采用电池电压下降率表征核容过程对SOH的影响,采用内阻变化表征浮充过程对SOH的影响,适用于变电站用铅酸电池的全生命周期。最后通过加速寿命实验验证所提出的算法,实验结果表明,该算法能够很好地表征变电站用铅酸电池的衰减状态,估计精度高。  相似文献   

2.
电池健康状态(SOH)是进行电池健康监管和维护的重要依据。以某种车用磷酸铁锂单体电池为实验对象,提出了一种蚁群算法优化后的神经网络算法,以电池直流内阻定义SOH,并将该算法应用到电池健康状态估计模型。结果表明所提出的模型和方法预测电池最大直流内阻误差为0.1 mΩ,平均误差为0.049 mΩ,表明该方法能较为准确地预测电池直流内阻,实时反映电池的健康状态。  相似文献   

3.
健康状态(state of health,SOH)估计在电池管理系统中起着非常关键的作用。为了进一步提高锂电池SOH估计精度,提出基于平方根扩展卡尔曼滤波算法(square root extended Kalman filter,SREKF)的锂电池SOH估计方法。通过建立二阶RC等效电路模型(equivalent circuit model,ECM),将表示SOH的欧姆电阻(R_0)塑造为状态向量,利用锂电池欧姆内阻与SOH之间的内在关系,可得到锂电池的SOH。通过SREKF实时估计电池的内阻,该方法能保证状态协方差矩阵的对称性和非负性。在恒流工况与混合动力脉冲特性(HPPC)工况的验证结果表明,与EKF算法相比,SREKF算法能够更准确、更可靠地估计欧姆内阻,为电池SOH估计提供了一种有效的方法。  相似文献   

4.
根据18650型锂离子单体电池的特性分析,建立了电路等效模型和电化学模型相结合的电池模型,以实时在线辨识锂离子电池欧姆内阻为目标,利用无迹Kalman(UKF)滤波算法,实现了对电池欧姆内阻的在线辨识,开展了锂离子电池健康状况(SOH)估计实验,建立了适用于18650型锂离子电池的SOH估计模型。仿真结果显示,该模型同时考虑电池内阻在不同工况下的变化趋势和充放电电流大小等因素,为实现锂离子电池健康状况精确估计提供了较好的理论基础。  相似文献   

5.
针对锂离子动力电池健康状态(SOH)估计问题,提出一种自适应无迹卡尔曼滤波算法(AUKF),通过协方差自适应匹配方法抑制噪声干扰,实现SOH的准确估计。建立了锂离子动力电池的状态空间模型,采用AUKF实时估计电池内阻,利用电池欧姆内阻和SOH之间的内在关系,进而得到电池的SOH。实验结果表明,利用所提方法估计SOH准确、可靠,为电池管理系统中状态估计提供了一种有效的方法。  相似文献   

6.
电池组中单体间存在的不一致性是电池状态估计问题中的一大难点。针对串联锂离子电池组,提出了一种基于强跟踪滤波器(strong tracking filter,STF)与LevenbergMarquardt(LM)算法相结合的电池组不一致性辨识与状态估计的新方法。首先针对"参考单体"给出了一阶等效电路模型与开路电压–荷电状态(state of charge,SOC)特性关系曲线,通过STF算法得到其状态估计与参数估计;其次建立不同单体的"电压相似函数",并引入LM算法对SOC、极化电压、欧姆内阻3种不一致因素进行辨识;最后对2组5个LiFePO_4单体串联的电池组在不同的工况下进行了实验验证。结果表明,所提方法对各单体的状态与内阻估计误差在合理的范围内,对电池组不一致性辨识与状态估计具有良好的效果。  相似文献   

7.
高昕  韩嵩 《电源技术》2021,45(9):1140-1143,1208
锂离子电池荷电状态(SOC)和健康状态(SOH)的精确估计对电动汽车稳定运行十分重要.以精确估计电池SOC和SOH为目标,提出了一种基于分数阶模型的协同估计算法.建立基于二阶RC电路模型的分数阶电池模型,采用自适应遗传算法(AGA)辨识模型参数,利用分数阶扩展卡尔曼滤波(FOEKF)算法估计SOC,并结合自适应无迹卡尔曼滤波(AUKF)算法估计SOH,迭代更新内阻与SOC进而实现SOC与SOH精确的协同估计.在城市道路循环工况(UDDS)下使用Matlab工具验证和对比了算法精度,平均误差均控制在2%以内.结果表明,该协同估计算法能够精确估计电池SOC和SOH,为电池状态估计提供了一种方法.  相似文献   

8.
应用传统的无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计电动汽车锂离子动力电池核电状态(state of charge,SOC)时,常会出现由于电池模型参数不准确而造成估计误差增大的问题,该文采用了自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法解决该问题。AUKF算法是一种循环迭代算法,可以实时估计电池模型中的欧姆内阻,提高电池模型准确性,从而提高电池SOC估计精度。另外,电池的欧姆内阻可以表征电池的健康状态(state of health,SOH),因此还可以根据电池的欧姆内阻估计出电池的SOH。在设定工况下对电池做充放电实验,实验分析表明,与UKF相比,AUKF提高了电池SOC估计的精度,并能准确的估计出电池的欧姆内阻。  相似文献   

9.
应用传统的无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计电动汽车锂离子动力电池核电状态(state of charge,SOC)时,常会出现由于电池模型参数不准确而造成估计误差增大的问题,该文采用了自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法解决该问题。AUKF算法是一种循环迭代算法,可以实时估计电池模型中的欧姆内阻,提高电池模型准确性,从而提高电池SOC估计精度。另外,电池的欧姆内阻可以表征电池的健康状态(state of health,SOH),因此还可以根据电池的欧姆内阻估计出电池的SOH。在设定工况下对电池做充放电实验,实验分析表明,与UKF相比,AUKF提高了电池SOC估计的精度,并能准确的估计出电池的欧姆内阻。  相似文献   

10.
利用传统的安时积分法估计全钒液流电池(vanadium redox flow battery,VRB)的荷电状态(state of charge,SOC),常常会因为累积误差造成估计误差增大的问题。该文针对这一问题,以一阶RC等效电路模型为基础,采用无迹卡尔曼滤波(unscented Kalman filter,UKF)算法对安时积分法估计结果进行修正,提高SOC估计精度。此外,UKF算法同时可以在收敛后准确地实时估计电池模型中的内阻,而电池的内阻可以表征其健康状态(state of health,SOH),因此UKF算法可根据内阻的估计结果评价电池的SOH。在工况下对电池进行测试性充放电实验,实验结果表明,UKF算法可以快速完成电池SOC的精确估计,绝对误差小于2%,并能准确地估计出电池的内阻,为电池SOH的确定提供参考依据。  相似文献   

11.
从电动汽车中退役的锂电池在功能元件有效的情况下可进行梯次利用,针对退役锂电池处于离线状态且单体电池之间存在性能差异等问题,以锂电池欧姆内阻为研究对象,设计适用于梯次利用锂电池性能测试工况。基于锂电池一阶RC等效电路模型,研究基于增量式自回归模型(IARX)的健康特征数据提取方法,以此构建均值内阻、最小内阻和内阻-荷电状态(SOC)三种健康因子,建立健康寿命模型,提出基于多模型数据融合技术的锂电池健康状态(SOH)预测方法。实验和仿真结果表明:所建健康寿命模型适用于预测同种类退役锂电池SOH,验证了模型的有效性;基于多模型数据融合技术有利于提高锂电池SOH预测精度,验证了此方法的可行性。  相似文献   

12.
史永胜  任嘉睿  李锦  张凯 《电源学报》2023,21(2):163-171
电池健康状态SOH(state-of-health)和荷电状态SOC(state-of-charge)估计是电池管理系统的核心功能。目前,状态估计存在依赖大量历史数据以及单一状态估计适应性差的问题,因此提出一种基于DeepAR与特征选择的锂离子电池状态估计模型。首先,提取电池恒流充电过程中电压、温度及时间间隔数据,组成3组老化特征作为模型输入,用于估计SOH;然后,在估计SOC时考虑SOH估计值,消除了电池老化因素对SOC估算的负面影响;最后,在不同工况下的牛津电池数据集上进行实验验证,并与其他两种算法模型进行误差与收敛性对比。结果表明,所提模型在冷启动估计方面具有较强的优势,SOH和SOC估计精度较高。  相似文献   

13.
在电池的使用过程中,电池组荷电状态(SOC)的准确估计对电动汽车的使用起到非常重要的作用,直接关系到车辆的续航里程。同时组成电池组的电池单体SOC的一致性会直接影响电池组的充、放电效率。在电池的使用过程中,组成电池组的电池单体会存在一定的不一致性,这使得电池组的SOC估计相当困难。在分析电池单体模型的基础上,对电池组进行建模,并使用重组状态空间方程的方法降低电池组状态空间方程的维数,同时使用EKF-UKF对电池组的内部参数和电池组的SOC进行观测和估计。最后通过恒流工况和DST工况验证算法的准确性和正确性,并分析了电池单体间的不一致性对电池组容量的影响。  相似文献   

14.
动力电池的健康状态(SOH)估计是电动汽车电池管理系统的关键技术之一。提出了一种基于双非线性预测滤波法的锂离子电池SOH估计方法。基于Thevenin等效电路模型来表达电池的性能,基于双非线性预测滤波法对电池的容量和内阻进行估计从而实现SOH的在线估计,基于磷酸铁锂电池的循环寿命测试对提出的方法进行验证,结果表明,基于双非线性预测滤波法的SOH估计方法能够在电池的整个生命周期内实现SOH的精确预测。  相似文献   

15.
为了研究钠硫电池串并联电池组性能影响因素,首先在并联支路容量、并联支路初始荷电状态、电池串并联连接方式一致的前提下,研究了并联支路欧姆内阻差异对钠硫电池组性能的影响,实验结果表明电池成组时选用欧姆内阻一致的电池能够减小并联支路在平台期和充电末端的不平衡电流,同时还能够减小并联支路之间的荷电状态累积差异;其次在单体电池内阻、电池组使用环境、电池组使用工况等参数一致的情况下,研究了不同串并联方式对钠硫电池组性能的影响,实验结果表明采用先串后并的连接方式时每个支路串联的电池数量越多,该并联支路电池内阻更接近该批次电池电池内阻平均值的整数倍,能够显著降低并联支路电流不平衡性和荷电状态累积差异。  相似文献   

16.
为提高锂离子电池荷电状态(state of charge,SOC)的估计精度并准确估计健康状态(state of health,SOH),以二阶RC等效电路模型为研究对象,基于Sage-Husa自适应滤波的思想,对传统的平方根无迹卡尔曼滤波(square-root unscented Kalman filter,SRUKF)进行改进,提出一种自适应SRUKF(adaptive square-root unscented Kalman filter,ASRUKF)算法,该算法通过对状态方差阵和噪声方差阵平方根的递推估算,确保了状态和噪声方差阵的对称性和非负定性。验证结果显示,相比于SRUKF算法,ASRUKF算法能够得到精度更高的SOC估计值,并在FUDS工况下将最大SOC估计误差降低4%。针对电池欧姆内阻和容量参数随着电池的老化而变化的现象,对内阻和容量进行实时在线估计,在此基础上完成对SOH参数的预测。验证结果表明,联合估计算法对电池的欧姆电阻和容量有一个较好的估计,进一步提升了电池状态的估计精度。  相似文献   

17.
锂离子电池健康状态(SOH)的精确估计是电池管理系统面临的核心问题之一。针对实际的电池容量很难直接测量和容量再生导致的SOH估计误差问题,提出了一种基于增量能量法和双向门控循环网络(BiGRU)-Dropout的锂离子电池健康状态估计方法。首先分析增量能量曲线随电池老化的衰退规律,提取出最大峰值高度作为电池SOH的新健康因子。通过翻转层和门控循环网络层所搭建的BiGRU网络得出健康因子与SOH的映射关系,同时添加Dropout机制网络层防止出现过拟合现象,建立SOH估计模型用于电池SOH精确估计。实验结果表明,在不同充电倍率条件下,该方法均可快速、准确地估计电池SOH。  相似文献   

18.
准确估计动力电池的荷电状态(SOC)及健康状态(SOH)是电池领域的关键性技术,对正在服役的动力电池进行全面安全精确的管理是保障电动汽车安全高效运行的前提。以二阶RC等效电路模型为基础,运用无迹卡尔曼滤波算法(UKF)对电池SOC和欧姆内阻进行实时估计,再利用电池欧姆内阻与SOH的关系,实现了对SOH的实时估计。与传统的扩展卡尔曼滤波算法相比,无迹卡尔曼滤波算法无需对状态方程进行线性化处理,不存在截断误差,具有更高的估算精度与稳定性。  相似文献   

19.
单体电池的一致性直接影响成组后电池组的性能。影响单体之间一致性的因素主要有:电压、内阻和容量。通过对同一批次生产的锂-二氧化锰单体电池不同贮存期开路电压变化和内阻差异进行统计、分析,单体不同倍率的负载能力测试以及实效验证实验,确定了锂-二氧化锰单体电池的筛选方法和顺序。  相似文献   

20.
为了更加高效地评估储能电池组的健康状态(SOH),提出一种基于电压极差特征的早期健康状态检测方法。首先基于大容量磷酸铁锂储能电池组开展循环老化试验,测量每次循环的电压极差信号,并从中提取关键时间点的电压特征;其次,基于皮尔逊(Pearson)相关系数及灰色关联度分析法(GRA)筛选与电池组老化高度相关的健康因子。最后,通过麻雀搜索算法(SSA)优化双向长短时记忆网络(BiLSTM)的超参数,搭建SSA-BiLSTM健康状态估计模型,实现储能电池组SOH评估;并结合常规机器学习算法验证了健康因子的有效性和估计模型的优越性。结果表明,所提取充放电静置30 min的电压极差特征能够有效反映电池组容量衰退趋势,多种模型验证下SOH估计误差均低于±0.8%。其中,本文所提出的SSA-BiLSTM模型均方根误差(RMSE)低至0.07%。因此该方法能够有效地对大容量储能电池组的SOH实现在线监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号