首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
传统的基于相关反馈的时间序列相似性搜索是将正反馈和负反馈融合在一起创建新查询向量,这样并没有充分利用负反馈序列的价值,而且容易对初始查询向量进行过多的更改。本文提出一种基于反馈的时间序列相似搜索方法,将反馈的正相关和负相关序列分开处理,最终的相似序列不但要与正相关序列相似,还要尽量与负相关序列不相似。在UCR数据集上的实验结果表明,本文提出的相似搜索方法与传统的基于反馈的相似搜索方法相比,在某些数据集上可以提高查询的准确率以及查全率。  相似文献   

2.
基于开矿表示的时间序列相似性搜索   总被引:3,自引:0,他引:3  
时间序列是一类重要的复杂数据,时间序列知识发现正成为知识发现的研究热点之一,时间序列的相似性搜索是时间序列知识发现的重要方面,提出一种新的基于形态表示的时间序列相似性搜索机制。该机制采用逐段线性化技术,将复杂的时间序工线简化为多个直线段,同时,结合时间序列的符号表示思想,构造了基于云模型的形态概念树,提出了时间序列的形态描述方法-基于云模型的时间序列表示法,并在此基础上采用增强动态编程算法实现了时  相似文献   

3.
多元时间序列相似模式挖掘是数据挖掘领域的研究热点,它主要包括特征表示、相似模式度量和相似性搜索3个方面.目前,大部分研究成果主要集中在特征表示和相似模式度量,相似性搜索则成为制约问题突破的关键环节.为此,主要针对多元时间序列的相似性搜索进行综述,归纳了主要的相似模式度量方法,对比了不同相似模式度量下的序列搜索方法,并分析了不同方法的优缺点,以期为进一步研究多元时间序列相似性搜索提供帮助.  相似文献   

4.
时间序列相似性分析方法研究   总被引:11,自引:0,他引:11  
在经典的时间序列相似分析方法基础上,论文讨论了一些有代表性的现代时间序列相似性分析方法,对其基本思想加以分析和提炼,总结了这些方法的优缺点,为时间序列分析研究提供了较为完整的成果概览。  相似文献   

5.
为了更好地体现时间序列的形态特征,并探索更适合于较长时间序列之间相似性度量的方法,在动态时间弯曲算法的基础上进行改进,提出了基于分层动态时间弯曲的序列相似性度量方法。对时间序列进行多层次分段,并从分段中均匀抽取相对应的层次分段子序列,然后将层次分段子序列抽象为三维空间的点(反映了分段子序列的均值、长度和趋势)进行相似性度量,最后综合各个层次的相似性度量作为结果。实验表明,在参数设置合理的情况下,此方法能获得较高的序列相似性度量准确度和效率。  相似文献   

6.
时间序列的快速相似性搜索改进算法   总被引:1,自引:0,他引:1  
This paper introduces a new method for finding all subsequences similar to a given time series sequence.The method takes into account noise ,offset translation and amplitude scaling. Based on a piecewise linear representa-tion, the speed is exceptionally fast.  相似文献   

7.
针对动态时间弯曲方法计算时间过长的问题,提出增量动态时间弯曲来度量较长时间序列之间的相似性。首先利用动态时间弯曲方法对历史时间序列数据进行相似性度量,得到相应的历史最优弯曲路径和路径中各元素的累积距离代价。其次,通过逆向弯曲度量方法完成当前序列数据 的相似性度量,结合历史数据信息找到与历史弯曲路径相交且度量时间序列距离为当前最小值的新路径,进而实现增量动态时间弯曲的相似性度量。该方法不仅具有良好的度量质量,还具有较高的时间效率。数值实验表明,对于大部分时间序列数据集,新方法的分类准确率和计算性能要优于经典动态时间弯曲。  相似文献   

8.
基于形态表示的时间序列相似性搜索   总被引:14,自引:0,他引:14  
时间序列是一类重要的复杂数据 ,时间序列知识发现正成为知识发现的研究热点之一 ,时间序列的相似性搜索是时间序列知识发现的重要方面 .提出一种新的基于形态表示的时间序列相似性搜索机制 .该机制采用逐段线性化技术 ,将复杂的时间序列曲线简化为多个直线段 .同时 ,结合时间序列的符号表示思想 ,构造了基于云模型的形态概念树 ,提出了时间序列的形态描述方法——基于云模型的时间序列表示法 ,并在此基础上采用增强动态编程算法实现了时间序列的相似性搜索 .  相似文献   

9.
面向相似性搜索的时间序列表示方法述评   总被引:6,自引:0,他引:6  
时间序列作为一种数据形式,广泛存在于各种商业、医学、工程、自然科学和社会科学等数据库中。近年来,时间序列的相似性搜索问题正得到越来越多的重视。该问题可描述为给定某个的时间序列,要求从一个大型时间序列数据库中找出与之最相似的序列。该问题的有效求解涉及到两个关键难点,即相似性度量的定义和搜索算法的时间复杂度,而这两者都依赖于时间序列的近似表示方法。因此,通过详细评述面向相似性搜索的各种时间序列近似表示方法,对这些方法进行分析和比较,总结了这些方法的优点和不足,并对进一步的研究方向作出了预测。  相似文献   

10.
为了进一步改善和提高基于模式的时间序列趋势相似性度量效果,在时间序列分段线性表示的基础上,依据分段子序列的均值及其线性拟合函数的导数符号,实现时间序列的分段模式化,以模式之间的异同性定义模式匹配距离,借鉴动态时间弯曲(Dynamic Time Warping,DTW)的动态规划原理,提出一种动态模式匹配方法(Dynamic Pattern Matching,DPM)。实验结果表明,该方法能够在不同压缩率条件下,准确度量等长时间序列的趋势相似性,而且时间消耗较低。时间序列不等长作为存在数据缺失的一种表现形式,该方法的度量效果与数据缺失比例之间的关系值得进一步的深入研究。  相似文献   

11.
研究基于时间序列相似搜索技术的煤矿瓦斯涌出分析新途径,提出基于PPR的煤矿瓦斯监测数据相似搜索方法。实验采用玉华煤矿的真实煤矿瓦斯监测数据,评价指标为信息损失量及相似查询效率。与基于离散傅立叶变换(DFT)和离散小波变换(DWT)的时间序列相似搜索算法的对比实验显示:在相同压缩比下,3种方法的信息损失相近;但是基于PPR的相似搜索算法的平均查询效率分别比基于DFT和基于DWT方法高32%和34%。因此PPR算法适合用于瓦斯监测数据相似搜索。  相似文献   

12.
传统的时间序列表示方法均在不同程度上采用了对数据的约简手段,从而破坏了时间序列的非线性和分形这些重要的本质特征,也就使得时间序列的相似性匹配误差加大。提出一种高精度的随机非平稳时间序列表示方法FSPA,该方法将分形理论和R/S方法应用到现有的时间序列表示方法中,既保留了时间序列的非线性和分形的重要特征,同时也实现了维度的约简。实验分别在合成数据和实际数据上进行,结果表明,该方法具有更高的精度且需要较少的存储空间。  相似文献   

13.
利用反馈的时序模式挖掘算法研究   总被引:2,自引:0,他引:2  
针对时序数据相似性挖掘方法进行研究,提出一种利用反馈的时序数据相似性挖掘算法,由用户赋予各初始范围查询得到的相似序列相应的权值,通过反馈与给定序列叠加产生新的查询序列,再次进行范围查询,获得相似序列,将该算法用于某钢铁企业的电力负荷时序数据,计算结果表明了算法的有效性。  相似文献   

14.
到目前为止能够计算字符化时间序列的距离度量的方法很少,为此,提出了一种新的字符化的时间序列表示方法BSAP。该方法既能进行维度约简又允许在符号化后的时间序列表示法上定义距离度量。实验分别在合成数据和实际数据上进行,实验表明该方法具有更高的运算效率且需要较少的空间。  相似文献   

15.
基于斜率偏离的时间序列相似性搜索方法研究*   总被引:1,自引:3,他引:1  
摘要:针对数据挖掘领域中时间序列的相似性度量问题,提出了基于斜率偏离度量的浮动索引相似性搜索算法。在斜率偏离度量的基础上建立分箱标志,通过浮动索引方法有效实现高维多元时间序列的准确索引,用实际的飞行数据进行仿真验证获得好的效果,证明这种方法的有效性和可靠性。  相似文献   

16.
在时间序列相似性问题中滑动窗口的确定   总被引:1,自引:0,他引:1  
作为一个非平凡命题,大多数时间序列相似性查找方法都涉及到了对原数据的维度简约.在保持原序列中有效信息量的同时,尽量降低计算复杂度是这些算法的关键.讨论滑动窗口在时间序列相似性降维技术中的实际应用,从中发现确定自适应滑动窗口大小的一种新方法.通过对时序特征值分布函数的挖掘,发现时间序列中的若干有效点,从而确定一组合适的滑动窗口大小,并根据序列变化的来决定最佳的滑动窗口.  相似文献   

17.
时间序列数据挖掘综述   总被引:17,自引:3,他引:17  
在综合分析近年来时间序列数据挖掘相关文献的基础上,讨论了时间序列数据挖掘的最新进展,对各种学术观点进行了比较归类,并预测了其发展趋势.内容涵盖了时间序列数据变换、相似性搜索、预测、分类、聚类、分割、可视化等方面,为研究者了解最新的时间序列数据挖掘研究动态、新技术及发展趋势提供了参考.  相似文献   

18.
林炀  江育娥  林劼 《计算机应用》2016,36(12):3285-3291
基于动态时间规整算法思想的CrossMatch算法可以用来解决序列间的部分相似问题,但是由于算法时间空间复杂度过高,需要消耗大量的计算资源,因此无法应用于长序列之间的计算。针对以上问题,提出了一个基于分布式平台上的时间序列局部相似性检测算法。将CrossMatch算法实现在了分布式框架上,解决了计算资源不足的问题。首先需要对序列进行切分,分别放置在不同的节点上;其次,各节点分别处理各自序列的相似部分;最后,通过对结果进行汇总并拼接,找出序列间的局部相似。实验结果表明,该算法在准确性上和CrossMatch相近,在时间上也有提升。改进后的分布式算法不仅解决了单机无法处理的长序列计算问题,而且可以通过增加并行计算节点数提高运行速度。  相似文献   

19.
Improving the recall of information retrieval systems for similarity search in time series databases is of great practical importance. In the manufacturing domain, these systems are used to query large databases of manufacturing process data that contain terabytes of time series data from millions of parts. This allows domain experts to identify parts that exhibit specific process faults. In practice, the search often amounts to an iterative query–response cycle in which users define new queries (time series patterns) based on results of previous queries. This is a well-documented phenomenon in information retrieval and not unique to the manufacturing domain. Indexing manufacturing databases to speed up the exploratory search is often not feasible as it may result in an unacceptable reduction in recall. In this paper, we present a novel adaptive search algorithm that refines the query based on relevance feedback provided by the user. Additionally, we propose a mechanism that allows the algorithm to self-adapt to new patterns without requiring any user input. As the search progresses, the algorithm constructs a library of time series patterns that are used to accurately find objects of the target class. Experimental validation of the algorithm on real-world manufacturing data shows, that the recall for the retrieval of fault patterns is considerably higher than that of other state-of-the-art adaptive search algorithms. Additionally, its application to publicly available benchmark data sets shows, that these results are transferable to other domains.  相似文献   

20.
由于传统的时序相似性度量方式不满足距离三角不等式关系,影响后续的相似性搜索及关联规则的获取,在时序符号化的基础上,提出一种满足三角不等式的符号化距离度量方式。与MINDIST_PAA_SAX和Sym_PAA_SAX度量方式进行比较,其结果表明,该度量方式在异常检测和相似性查询上具有较好的优越性。实验结果表明,该方法在相似性搜索及关联规则的获取方面具有更高的可信度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号