首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RDF is a knowledge representation language dedicated to the annotation of resources within the framework of the semantic web. Among the query languages for RDF, SPARQL allows querying RDF through graph patterns, i.e., RDF graphs involving variables. Other languages, inspired by the work in databases, use regular expressions for searching paths in RDF graphs. Each approach can express queries that are out of reach of the other one. Hence, we aim at combining these two approaches. For that purpose, we define a language, called PRDF (for “Path RDF”) which extends RDF such that the arcs of a graph can be labeled by regular expression patterns. We provide PRDF with a semantics extending that of RDF, and propose a correct and complete algorithm which, by computing a particular graph homomorphism, decides the consequence between an RDF graph and a PRDF graph. We then define the PSPARQL query language, extending SPARQL with PRDF graph patterns and complying with RDF model theoretic semantics. PRDF thus offers both graph patterns and path expressions. We show that this extension does not increase the computational complexity of SPARQL and, based on the proposed algorithm, we have implemented a correct and complete PSPARQL query engine.  相似文献   

2.
Semantics preserving SPARQL-to-SQL translation   总被引:2,自引:0,他引:2  
Most existing RDF stores, which serve as metadata repositories on the Semantic Web, use an RDBMS as a backend to manage RDF data. This motivates us to study the problem of translating SPARQL queries into equivalent SQL queries, which further can be optimized and evaluated by the relational query engine and their results can be returned as SPARQL query solutions. The main contributions of our research are: (i) We formalize a relational algebra based semantics of SPARQL, which bridges the gap between SPARQL and SQL query languages, and prove that our semantics is equivalent to the mapping-based semantics of SPARQL; (ii) Based on this semantics, we propose the first provably semantics preserving SPARQL-to-SQL translation for SPARQL triple patterns, basic graph patterns, optional graph patterns, alternative graph patterns, and value constraints; (iii) Our translation algorithm is generic and can be directly applied to existing RDBMS-based RDF stores; and (iv) We outline a number of simplifications for the SPARQL-to-SQL translation to generate simpler and more efficient SQL queries and extend our defined semantics and translation to support the bag semantics of a SPARQL query solution. The experimental study showed that our proposed generic translation can serve as a good alternative to existing schema dependent translations in terms of efficient query evaluation and/or ensured query result correctness.  相似文献   

3.
Since the beginning of the Semantic Web initiative, significant efforts have been invested in finding efficient ways to publish, store, and query metadata on the Web. RDF and SPARQL have become the standard data model and query language, respectively, to describe resources on the Web. Large amounts of RDF data are now available either as stand-alone datasets or as metadata over semi-structured (typically XML) documents. The ability to apply RDF annotations over XML data emphasizes the need to represent and query data and metadata simultaneously. We propose XR, a novel hybrid data model capturing the structural aspects of XML data and the semantics of RDF, also enabling us to reason about XML data. Our model is general enough to describe pure XML or RDF datasets, as well as RDF-annotated XML data, where any XML node can act as a resource. This data model comes with the XRQ query language that combines features of both XQuery and SPARQL. To demonstrate the feasibility of this hybrid XML-RDF data management setting, and to validate its interest, we have developed an XR platform on top of well-known data management systems for XML and RDF. In particular, the platform features several XRQ query processing algorithms, whose performance is experimentally compared.  相似文献   

4.
In the era of Big Data, users prefer to get knowledge rather than pages from Web. Linked Data, a rather new form of knowledge representation and publishing described by RDF, can provide a more precise and comprehensible semantic structure to satisfy the aforementioned requirement. Besides, as the standard query language for RDF data, SPARQL has become the foundation protocol of Linked Data querying. The core idea of RDF Schema (RDFS) is to extend upon RDF vocabulary and allow attachment of semantics to user defined classes and properties. However, RDFS cannot fully utilize the potential of RDF since it cannot express the implicit semantics between linked entities in Linked Data sources. To fill this gap, in this paper, we design a new semantic annotating and reasoning approach that can extend more implicit semantics from different properties. We firstly establish a well‐defined semantically enhanced annotation strategy for Linked Data sources. In particular, we present some new semantic properties for predicates in RDF triples and design a Semantic Matrix for Predicates (SMP). We then propose a novel general Semantically Extended Scheme for Linked Data Sources (SESLDS) to realize the semantic extension over the target Linked Data source through semantically enhanced reasoning. Lastly, based on the experimental analyses, we verify that our proposal has advantages over the initial Linked Data source and can return more valid results.  相似文献   

5.
Ontology-based data-centric systems support open-world reasoning. Therefore, for these systems, Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL) are not suitable for expressing integrity constraints based on the closed-world assumption. Thus, the requirement of integrating the open-world assumption of OWL/SWRL with closed-world integrity constraint checking is inevitable. SPARQL, recommended by World Wide Web (W3C), is a query language for RDF graphs, and many research studies have shown that it is a perfect candidate for closed-world constraint checking for ontology-based data-centric applications. In this regard, many research studies have been performed to transform integrity constraints into SPARQL queries where some studies have shown the limitations of partial expressivity of knowledge bases while performing the indirect transformations, whereas others are limited to a platform-specific implementation. To address these issues, this paper presents a flexible and formal methodology that employs Model-Driven Engineering (MDE) to model closed-world integrity constraints for open-world reasoning. The proposed approach offers semantic validation of data by expressing integrity constraints at both the model level and the code level. Moreover, straightforward transformations from OWL/SWRL to SPARQL can be performed. Finally, the methodology is demonstrated via a real-world case study of water observations data.  相似文献   

6.
The Semantic Web is based on accessing and reusing RDF data from many different-sources, which one may assign different levels of authority and credibility. Existing Semantic Web query languages, like SPARQL, have targeted the retrieval, combination and re-use of facts, but have so far ignored all aspects of meta knowledge, such as origins, authorship, recency or certainty of data.In this paper, we present an original, generic, formalized and implemented approach for managing many dimensions of meta knowledge, like source, authorship, certainty and others. The approach re-uses existing RDF modeling possibilities in order to represent meta knowledge. Then, it extends SPARQL query processing in such a way that given a SPARQL query for data, one may request meta knowledge without modifying the query proper. Thus, our approach achieves highly flexible and automatically coordinated querying for data and meta knowledge, while completely separating the two areas of concern.  相似文献   

7.
8.
In this article we describe a Semantic Web application for semantic annotation and search in large virtual collections of cultural-heritage objects, indexed with multiple vocabularies. During the annotation phase we harvest, enrich and align collection metadata and vocabularies. The semantic-search facilities support keyword-based queries of the graph (currently 20 M triples), resulting in semantically grouped result clusters, all representing potential semantic matches of the original query. We show two sample search scenario’s. The annotation and search software is open source and is already being used by third parties. All software is based on established Web standards, in particular HTML/XML, CSS, RDF/OWL, SPARQL and JavaScript.  相似文献   

9.
10.
We address efficient processing of SPARQL queries over RDF datasets. The proposed techniques, incorporated into the gStore system, handle, in a uniform and scalable manner, SPARQL queries with wildcards and aggregate operators over dynamic RDF datasets. Our approach is graph based. We store RDF data as a large graph and also represent a SPARQL query as a query graph. Thus, the query answering problem is converted into a subgraph matching problem. To achieve efficient and scalable query processing, we develop an index, together with effective pruning rules and efficient search algorithms. We propose techniques that use this infrastructure to answer aggregation queries. We also propose an effective maintenance algorithm to handle online updates over RDF repositories. Extensive experiments confirm the efficiency and effectiveness of our solutions.  相似文献   

11.
12.
13.
Named graphs     
The Semantic Web consists of many RDF graphs nameable by URIs. This paper extends the syntax and semantics of RDF to cover such named graphs. This enables RDF statements that describe graphs, which is beneficial in many Semantic Web application areas. Named graphs are given an abstract syntax, a formal semantics, an XML syntax, and a syntax based on N3. SPARQL is a query language applicable to named graphs. A specific application area discussed in detail is that of describing provenance information. This paper provides a formally defined framework suited to being a foundation for the Semantic Web trust layer.  相似文献   

14.
15.
16.
The SPARQL LeftJoin abstract operator is not distributive over Union; this limits the algebraic manipulation of graph patterns, which in turn restricts the ability to create query plans for distributed processing or query optimization. In this paper, we present semQA, an algebraic extension for the SPARQL query language for RDF, which overcomes this issue by transforming graph patterns through the use of an idempotent disjunction operator Or as a substitute for Union. This permits the application of a set of equivalences that transform a query into distinct forms. We further present an algorithm to derive the solution set of the original query from the solution set of a query where Union has been substituted by Or. We also analyze the combined complexity of SPARQL, proving it to be NP-complete. It is also shown that the SPARQL query language is not, in the general case, fixed-parameter tractable. Experimental results are presented to validate the query evaluation methodology presented in this paper against the SPARQL standard, to corroborate the complexity analysis, and to illustrate the gains in processing cost reduction that can be obtained through the application of semQA.  相似文献   

17.
The Semantic Web’s promise of web-wide data integration requires the inclusion of legacy relational databases,1 i.e. the execution of SPARQL queries on RDF representation of the legacy relational data. We explore a hypothesis: existing commercial relational databases already subsume the algorithms and optimizations needed to support effective SPARQL execution on existing relationally stored data. The experiment is embodied in a system, Ultrawrap, that encodes a logical representation of the database as an RDF graph using SQL views and a simple syntactic translation of SPARQL queries to SQL queries on those views. Thus, in the course of executing a SPARQL query, the SQL optimizer uses the SQL views that represent a mapping of relational data to RDF, and optimizes its execution. In contrast, related research is predicated on incorporating optimizing transforms as part of the SPARQL to SQL translation, and/or executing some of the queries outside the underlying SQL environment.Ultrawrap is evaluated using two existing benchmark suites that derive their RDF data from relational data through a Relational Database to RDF (RDB2RDF) Direct Mapping and repeated for each of the three major relational database management systems. Empirical analysis reveals two existing relational query optimizations that, if applied to the SQL produced from a simple syntactic translations of SPARQL queries (with bound predicate arguments) to SQL, consistently yield query execution time that is comparable to that of SQL queries written directly for the relational representation of the data. The analysis further reveals the two optimizations are not uniquely required to achieve a successful wrapper system. The evidence suggests effective wrappers will be those that are designed to complement the optimizer of the target database.  相似文献   

18.
19.
Knowledge graph is an important cornerstone of artificial intelligence, which currently has two main data models: RDF graphs and property graphs. There are several query languages on these two data models, including SPARQL on RDF graphs and Cypher on property graphs. Over the last decade, various communities have developed different data management methods for RDF graphs and property graphs. Inconsistent data models and query languages hinder the wider application of knowledge graphs. In this paper, we propose a knowledge graphy database (KGDB) system with unified data model and query language. (1) We work out a unified storage scheme based on the relational model that supports the efficient storage of RDF graphs and property graphs, catering to the smooth storage and query of knowledge graph data. (2) The characteristic set-based clustering is used in KGDB for the storage of typeless entities. (3) It realizes the interoperability of SPARQL and Cypher by enabling them to operate on the same knowledge graph. Extensive experiments on real-world datasets and synthetic datasets reveal that KGDB is more efficient than existing knowledge graph database management systems in storage management and query efficiency. KGDB saves 30% of the storage space on average compared with gStore and Neo4j. In addition, KDGB is two orders of magnitude faster than gStore and Neo4j in the query of the real-world datasets, seen from experiments on the query of basic graph pattern matching.  相似文献   

20.
Linked Open Data initiatives have encouraged the publication of large RDF datasets into the Linking Open Data (LOD) cloud, including DBpedia, YAGO, and Geo-Names. Despite the size of LOD datasets and the development of (semi-)automatic methods to create and link LOD data, these datasets may be still incomplete, negatively affecting thus accuracy of Linked Data processing techniques. We acquire query answer completeness by capturing knowledge collected from the crowd, and propose a novel hybrid query processing engine that brings together machine and human computation to execute SPARQL queries. Our system, HARE, implements these hybrid query processing techniques. HARE encompasses several features: (1) a completeness model for RDF that exploits the characteristics of RDF in order to estimate the completeness of an RDF dataset; (2) a crowd knowledge base that captures crowd answers about missing values in the RDF dataset; (3) a query engine that combines on-the-fly crowd knowledge and estimates provided by the RDF completeness model, to decide upon the sub-queries of a SPARQL query that should be executed against the dataset or via crowd computing to enhance query answer completeness; and (4) a microtask manager that exploits the semantics encoded in the dataset RDF properties, to crowdsource SPARQL sub-queries as microtasks and update the crowd knowledge base with the results from the crowd. Effectiveness and efficiency of HARE are empirically studied on a collection of 50 SPARQL queries against the DBpedia dataset. Experimental results clearly show that our solution accurately enhances answer completeness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号