首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gas emissions and particulate matter of non-road diesel engine fueled with Fischer–Tropsch diesel fuel were investigated. The test was carried out on a four-stroke, water-cooled, single-cylinder engine under different the exhaust gas recirculation (EGR) rates such as 0%, 15%, and 30% at 2,700 rpm, 25%, 50%, and 75% load. The test results showed that when the EGR rate is less than 15%, nitrogen oxides (NOx) are reduced significantly, while hydrocarbon (HC) and carbon monoxide (CO) are increased less than 5%. However, when the EGR rate was 30%, HC and CO were maximally increased to 13.2% and 13.3%, respectively. Additionally, the Field Emission Scanning Electronic Microscope test and Energy Dispersive Spectrometer test were conducted. With increase of EGR rates, the micromorphology of particles was mainly showed as chain-like status and the growth of number concentration of particle was mainly contributed by the nuclear particle when the engine was at 25% load. In contrast, the micromorphology of particles was principally showed as clustered-like status, and the aggregated particles were dominating growth at 50% and 75% load. Moreover, as EGR rates increased, the degree of agglomeration and carbon content were gradually decreased at 25% load. The test also showed the opposite tendency at 50% and 75% load.  相似文献   

2.
An investigational analysis was performed to assess the effect of diethyl ether (DEE) that acts as an oxygenated additive in Jatropha biodiesel and diesel fuel blends on the performance enhancement and emission reduction of a variable compression ratio (CR) diesel engine. The DEE (10% vol) is added to different concentration levels of Jatropha biodiesel (B5, B10, and B20). The Jatropha biodiesel (JME) is prepared by the transesterification reaction and DEE is prepared through acid distillation of ethanol. The various tests were conducted by varying the loads at 25%, 50%, 75%, and 100% (3, 6, 9, and 12 kg). The DEE was entirely miscible with diesel and Jatropha biodiesel, the addition of DEE increases the cetane and calorific value, kinematic viscosity of the fuel blends compared with neat diesel or Jatropha biodiesel. The results illustrate that at higher loads and CRs, the engine performance parameters such as brake thermal efficiency enhances and reduces the brake-specific fuel consumption for DEE-Jatropha biodiesel-diesel fuel blends. Blend A3 (10% DEE + 20% JME + 70% diesel) demonstrated an overall improvement in the engine performance parameters and emission characteristics compared with A1, A2, and diesel fuel blends. It is concluded that the DEE-JME-diesel fuel blend is a promising source of fuel for diesel engine at maximum load.  相似文献   

3.
在高原环境(81kPa)下,对4100QBZL型柴油机燃用不同配比生物柴油混合燃料后的排放特性进行了实验研究。实验结果表明:与燃用柴油相比,各工况下,HC、CO和碳烟的排放均有不同程度的降低(分别平均下降4.5%~38.4%、15.4%~43.9%和12.5%~65.5%),高负荷低转速工况下效果尤为明显;NOx的排放也得到明显改善,只有纯生物柴油的NO。排放较柴油上升了0%~2.1%,其他指标均下降(平均下降4.4%~4.9%)。综合考虑,燃用掺混比为30%以内的生物柴油混合燃料,能同时有效地降低HC、CO、NOx和碳烟的排放。  相似文献   

4.
The present study is carried out to formulate stable water-in-soybean biodiesel emulsion fuel and investigate its emission characteristics in a single cylinder diesel engine. Four types of emulsion fuels, which consist of a different percentage of water (5%, 10%, 15%, and 20%) in soybean biodiesel, were prepared with suitable surfactant and properties were measured. The physicochemical properties are on par with EN 14214 standards. The experimental result of test fuels indicates that the soybean biodiesel promotes a lower level of hydrocarbon (HC), carbon monoxide (CO) and smoke emissions compared to base diesel except for nitrogen oxide (NOx) emission. Increase in water concentration with soybean biodiesel significantly reduces the NOx emission and smoke opacity. The HC and CO emissions are further reduced with emulsified biodiesel up to 10% water concentration and beyond that limit, marginal increases are recorded. Overall, it is observed that inclusion of water with soybean biodiesel reduces the HC, CO, NOx and smoke emissions when compared to base diesel and soybean biodiesel, and 10% water in soybean biodiesel is an appropriate solution to reduce the overall emissions in the soybean-fuelled diesel engine.  相似文献   

5.
This paper analyzes the emissions of a single‐cylinder diesel engine fueled with biodiesel, using selective catalytic reduction (SCR) and exhaust gas recirculation (EGR) techniques. The aim of this paper is to compare both EGR and SCR techniques, which were studied under different brake powers. Grape seed biodiesel was used as a test fuel. Experiments were performed by both techniques at different loads and rates to find out the performance change in the engine and the change in the emission rates using both the techniques. Then the observations from both the techniques were compared, concluding that both the techniques show a sufficient reduction in NOx. Using the abovementioned techniques, a reduction in hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), and smoke was observed. The EGR technique is more suitable for low‐load engine vehicles, as it affects the efficiency of the engine with an increase in the fuel consumption, whereas the SCR technique is suitable for high‐load engines, which do not affect the efficiency of the engine with a decrease in the fuel consumption.  相似文献   

6.
The present study analyzes the emission pattern of Decanol combined Jatropha biodiesel (JBD100) fueled diesel engine and compared with conventional diesel fuel (D100). Experiments were conducted in a single-cylinder, 4-stroke naturally aspirated diesel engine with an eddy current dynamometer at a constant speed of 1800 rpm. Modified fuel was prepared using a mechanical agitator, in which the Decanol concentration was varied from 10 to 20% to JBD100. The physicochemical properties of Decanol combined biodiesel are within ASTM limits. JBD100 promotes a lower level of carbon monoxide (CO) hydrocarbon (HC), and smoke emissions with notable increases in NOx and carbon dioxide (CO2) emissions. An inclusion of 20% Decanol in JBD100 reduces the NOx, Smoke, CO, and HC emission by 7.4%, 4.4%, 5.7%, and 5.9%, respectively, under full brake power.  相似文献   

7.
ABSTRACT

In the present scenario, the rate of fossil fuel consumption is very high and increasing rapidly which lead to a further increase in air pollution levels. Due to an increase in pollution level, researchers are striving to discover some cleaner and environment-friendly fuels for the diesel engines. This study was focused on the optimization of the input parameters of the diesel engine running on pongamia biodiesel for improvement in the engine performance. The input parameters selected for optimization were fuel injection pressure, fuel injection timing, pongamia biodiesel blends, and engine load with respect to BTE, BSFC, exhaust gas temperature, and Pmax. An experimental analysis was performed according to the response surface methodology technique. The best engine input parameters setting for getting optimum performance was found at fuel injection timing 25 bTDC, fuel injection pressure 226 bar, 40% of pongamia biodiesel blending, at 74% of maximum rated engine load. Experimental and optimized results of the output responses at optimum input parameters were compared and found in the suggested error range.  相似文献   

8.
The present study investigates the effect of Pithecellobium dulce biodiesel (PDBD) blends with diesel fuel on compression ignition (CI) engine emissions. Initially, PDBD was prepared by using a base transesteri?cation process. The GC‐MS, 1H NMR, and Fourier transform infrared characterization of PDBD was carried out, and fuel properties were determined. The experiments were conducted on a single cylinder, CI engine using three blended fuels: PDBD5 (5% biodiesel and 95% diesel), PDBD10 (10% biodiesel and 90% diesel), and PDBD20 (20% biodiesel and 80% diesel). The experimental outcomes revealed that 20% of PDBD reduces 19.64% carbon monoxide, 17.64% hydrocarbon, and 6.73% oxides of nitrogen emissions. Furthermore, from this study, it was inferred that the PDBD20 blend could be used as an alternative fuel for CI engines with no modi?cations in engine design.  相似文献   

9.
使用大气模拟试验台进行了直喷式柴油机在高原环境不同大气压下燃用不同体积掺混比生物柴油/柴油混合燃料的噪声测量对比试验研究。结果表明:噪声声功率随着大气压力和生物柴油掺混比的增加而减小;怠速工况时,在101kPa和81kPa大气压下分别燃用掺混比为70%和80%的混合燃料噪声值最小;在630~2000Hz噪声主要贡献频带上,各个测试点燃用B100油时声压级较B0油小;在高原环境下使用生物柴油可有效地降低柴油机整机噪声。  相似文献   

10.
This work presents the effect of the Di-tetra-butyl-peroxide (DTBP) as an oxygenated additive on neat used mustard oil biodiesel (B100) to evaluate the emission and performance engine characteristics. Four fuels, namely, diesel, biodiesel (Mustard biodiesel), a blend of B100-10percentage, and 20% by volume of DTBP (BD90DTBP10 and BD80DTBP20) are prepared and tested on a single cylinder, constant speed diesel engine. Experimental outcomes revealed that 20% of DTBP reduces 7.3% CO, 5.1% HC, and 4.6% NOx and 3.2% smoke emissions of B100. From this study, further, it is inferred that BD80DTBP20 blend could be utilized as an alternative fuel for a CI engine with no modifications in engine design.  相似文献   

11.
India is mainly an agricultural country. For irrigation, the farmers are primarily dependent on diesel engines which run on immaculate diesel. In order to reduce the consumption of diesel, oxygenated fuel additives seem to be a good proposition. In this connection, biodiesel is one of the best choices and this study is an attempt in that direction. Of the various non-edible vegetable oils available for making biodiesel, Mahua oil (Madhuca Indica) is preferred since it is widely available across the country. The problem with biodiesel is the higher emission of oxides of nitrogen (NOx). NOx emissions can be controlled with Ad-Blue (Urea) solution. Fortunately, for the irrigation sector, it may be considered as a blessing in disguise since, Urea which is used to control the NOx emissions is used as a fertilizer. In this work an experimental study has been carried out to assess the suitability of selective catalytic reduction (SCR) technique in reducing NOx. To arrive at accurate results, property characterization has been carried out for various blends. Tests were conducted on a multi-cylinder water cooled diesel engine at 2400 rpm. For loading an eddy current dynamometer was used. The injection nozzle opening pressure (NOP) was set to 220 bar with constant static injection timing (SIT) of 18° before top dead center (bTDC). This study presents the results at full load, employing SCR technique. The results were compared with conventional engine results under same operating condition where no reduction technique was employed. It was found that there was a significant reduction in NOx (around 3.91%) when the engine was operated with 25% biodiesel, thereby saving 25% diesel. This study establishes that SCR technique with 25% biodiesel addition as a viable option without any modification in the engine and without any compromise on the engine performance. Therefore, this option can be considered as sustainable one in agricultural operation.  相似文献   

12.
High-rise in the air pollution levels due to combustion of the fossil fuel gives us the opportunity to discover environmentally friendly and clean fuels for the engines. Biodiesel originated from cashew nut shell oil through transesterification process can be blended or used as a neat fuel in unmodified engines. This work investigates the effect of alumina nanoparticles on emission and performance characteristics of cashew nut shell biodiesel. Neat cashew nut shell biodiesel prepared by conventional transesterification is termed as BD100 and biodiesel prepared by modified transesterification with the addition of alumina nanoparticles is termed as BD100A. Experimental results on unmodified diesel engine revealed that emission parameters such as CO, HC, NOx, and smoke were decreased by 5.3%, 7.4%, 10.23%, and 16.1% for BD100% and 8.8%, 10.1%, 12.4%, and 18.4% for B100A, respectively, compared to diesel fuel. At full load conditions, compared to diesel fuel, the BTE dropped by 1.1% and 2.3%, whereas the BSFC increased by 3.8% and 5.1% for B100A and B100 correspondingly.  相似文献   

13.
Fischer-Tropsch (F-T) diesel fuel is characterized by a high cetane number, a near-zero sulphur content and a very low aromatic level. On the basis of the recorded incylinder pressures and injector needle lifts, the combustion characteristics of an unmodified single-cylinder direct-injection diesel engine operating on F-T diesel fuel are analyzed and compared with those of conventional diesel fuel operation. The results show that F-T diesel fuel exhibits a slightly longer injection delay and injection duration, an average of 18.7% shorter ignition delay, and a comparable total combustion duration when compared to those of conventional diesel fuel. Meanwhile, F-T diesel fuel displays an average of 26.8% lower peak value of premixed burning rate and a higher peak value of diffusive burning rate. In addition, the F-T diesel engine has a slightly lower peak combustion pressure, a far lower rate of pressure rise, and a lower mechanical load and combustion noise than the conventional diesel engine. The brake specific fuel consumption is lower and the effective thermal efficiency is higher for F-T diesel fuel operation. Translated from Journal of Xi’an Jiaotong University, 2006, 40(1): 5–9 [译自: 西安交通大学学报]  相似文献   

14.
Ethanol has been considered as an alternative fuel for diesel engines. On the other hand, injection timing is a major parameter that sensitively affects the engine performance and emissions. Therefore, in this study, the influence of advanced injection timing on the engine performance and exhaust emissions of a single cylinder, naturally aspirated, four stroke, direct injection diesel engine has been experimentally investigated when using ethanol‐blended diesel fuel from 0 to 15% with an increment of 5%. The original injection timing of the engine is 27° crank angle (CA) before top dead center (BTDC). The tests were conducted at three different injection timings (27, 30 and 33° CA BTDC) for 30 Nm constant load at 1800 rpm. The experimental results showed that brake‐specific energy consumption (BSEC), brake‐specific fuel consumption (BSFC), NOx and CO2 emissions increased as brake‐thermal efficiency (BTE), smoke, CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. Comparing the results with those of original injection timing, NOx emissions increased and smoke, HC and CO emissions decreased for all test fuels at the advanced injection timings. For BSEC, BSFC and BTE, advanced injection timings gave negative results for all test conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
对乙醇和生物柴油的互溶性和抗水性进行了研究,在ZS195型柴油机上进行了燃用生物柴油、乙醇-生物柴油、含水乙醇-生物柴油与纯柴油的经济性与排放特性对比试验研究。试验结果表明:B90E10和B90A10混合燃料能在20℃环境温度下保持良好的物理稳定性;B90E10,B90A10和生物柴油有效燃油消耗率高于纯柴油;CO排放量,在小负荷时趋于纯柴油的排放水平,大负荷时下降;生物柴油NOx排放量在小负荷时高于纯柴油水平,而B90E10和B90A10较生物柴油依次下降,其中B90A10的NOx排放量低于纯柴油水平,大负荷时3种燃料的NOx排放量接近,均高于纯柴油水平;THC排放量均低于纯柴油水平,其中生物柴油下降幅度最大,B90E10下降幅度最小;碳烟排放较纯柴油大幅度下降,且随着燃料中含氧量的增加依次下降。  相似文献   

16.
In this study, neat biodiesel with octanol additive was employed in a diesel engine and its effects on engine emission were studied. The five fuels evaluated were neat palm kernal oil biodiesel, octanol blended with biodiesel by 10%, 20%, and 30% volume, and diesel. All the emissions are reduced by the addition of octanol in biodiesel in all loads owing to the higher oxygen concentration of air/fuel mixtures and improved atomization. Hence, it is concluded that the neat biodiesel and octanol blends can be employed as an alternative fuel for existing unmodified diesel engines owing to its lesser emission characteristics.  相似文献   

17.
Alcohols extensively used in internal combustion engines are important renewable and sustainable energy resources from environmental and economical perspectives. Besides, bio production of alcohols decreases consumption of fossil‐based fuels. Although there are many studies with regards to the use of lower alcohols such as methanol and ethanol in internal combustion engines, there are a limited number of investigations with higher alcohols. Higher alcohols such as propanol, n‐butanol, and 1‐pentanol are part of the next generation of biofuels, given they provide better fuel properties than lower alcohols. Biodiesel–higher alcohol blends can be used in diesel engines without any engine modification but need to be tested under various engine conditions with long periods in order to evaluate their impacts on engine performance and environmental pollutants. The objective of this study was to evaluate the effect of using propanol, n‐butanol, and 1‐pentanol in waste oil methyl ester (B100) on engine performance and exhaust emissions of a diesel engine running at different loads (0, 3, 6, and 9 kW) with a fixed engine speed (1800 rpm). Test fuel blends were prepared by adding propanol, n‐butanol, and 1‐pentanol (10 vol.%) into waste oil methyl ester to achieve blends of B90Pr10, B90nB10, and B90Pn10, respectively. According to engine performance and exhaust emissions results, the addition of propanol, n‐butanol, and 1‐pentanol to B100 had the effect of increasing brake specific fuel consumption and exhaust gas temperatures. The brake thermal efficiency (BTE) decreased for B90Pr10 and B90nB10, while B90Pn10 showed a slight increase in BTE as compared with B100. When compared with B100, B90Pr10, B90nB10, and B90Pn10 decreased carbon monoxide emissions at lower loads while it increased slightly at 9 kW load. The decrement in oxides of nitrogen emission was observed at whole loads for B90Pr10, B90nB10, and B90Pn10 compared with B100. When considering all loads, B90Pn10 presented the best mean hydrocarbon emission with a reduction of 45.41%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
From the inception of commercialization of biodiesel, feedstock scarcity is a major issue to be pondered upon in developing countries. In this study, an attempt has been made to use an abundantly available underutilized high oil content (67% of Nahar seed kernel) feedstock derived biodiesel in a compression ignition engine. The experimental investigation on diesel engine reveals slightly reduced brake thermal efficiency and excellent exhaust emissions up to 40% blending of Nahar biodiesel with conventional diesel fuel. At full load, compared to diesel fuel, the BTE dropped by 1.64% and 1.83%, whereas the BSFC increased by 5.07% and 6.76% for B30 and B40 blends, respectively. The tested emission parameters such as CO, HC, NOx, and smoke were decreased by 12.66%, 17.99%, 8.31%, and 10.61% for B30 and 4.87%, 12.76%, 7.98%, and 11.78% for B40, respectively, compared to diesel fuel.

Abbreviation: BD: Biodiesel; DF: Diesel fuel  相似文献   


19.
ABSTRACT

In the present research work, the experimental analysis has been executed to investigate the influence of diethyl ether as an oxygenated additive to the diesel-biodiesel blend on the performance, combustion and emission characteristics of a diesel engine. The biodiesel (Frying oil methyl ester) was prepared by the transesterification process, and the biodiesel was added (40% by volume) to the diesel fuel to prepare the diesel-biodiesel blend (D60FME40). The diethyl ether was added to the diesel-biodiesel blends D60FM35 (diesel 60% + biodiesel 35% by volume) and D60FM30 (diesel 60% + biodiesel 30% by volume) with suitable volume proportions of 5% and 10% respectively to form diesel-biodiesel-diethyl ether blends ((D60FM35DEE5) & (D60FM30DEE10)). Initially, the test was conducted with diesel fuel to obtain the baseline reference reading. Then, the reading was compared with results taken from the engine using a diesel-biodiesel blend (D60FME40) and diethyl ether blends (D60FM35DEE5) & (D60FM30DEE10). The results reveal that the maximum brake thermal efficiency was obtained with diesel fuel and it was higher than the diesel-biodiesel blend and diethyl ether blends. The peak in-cylinder gas pressure and heat release rate in the premixed stage was less for the diesel-biodiesel blend, but it was increased with the addition of diethyl ether to the blend. The diesel-biodiesel-diethyl ether blends show less carbon monoxide and hydrocarbon emissions except for NOX emission as compared to the diesel and diesel-biodiesel blend, especially at the engine rated power.  相似文献   

20.
The combustion and emission characteristics of a turbo-charged, common rail diesel engine fuelled with diesel-biodiesel-DEE blends were investigated. The study reports that the brake-specific fuel consumption of diesel-biodiesel-DEE blends increases with increase of oxygenated fuel fractions in the blends. Brake thermal efficiency shows little variation when operating on different diesel-biodiesel-DEE blends. At a low load, the NOx emission of the diesel-biodiesel-DEE blends exhibits little variation in comparison with the biodiesel fraction. The NOx emission slightly increases with increase in the biodiesel fraction in diesel-biodiesel-DEE blends at medium load. However, the NOx emission increases remarkably with increase of the biodiesel fraction at high load. Particle mass concentration decreases significantly with increase of the oxygenated-fuels fraction at all engine speeds and loads; particle number concentration decreases remarkably with increase of the oxygenated-fuels fraction. HC and CO emissions decrease with increasing oxygenated-fuels fraction in these blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号