首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以核桃青皮为原料,分别在300、500、700℃条件下限氧热解制备核桃青皮生物炭,标记为WP300、WP500和WP700,并应用于溶液中Cd2+的吸附,筛选出吸附效果最佳的生物炭材料;研究生物炭投加量、溶液pH、Cd2+初始浓度对生物炭吸附效应的影响;并结合吸附动力学和等温吸附模型探讨核桃青皮生物炭对Cd2+的吸附过程和作用机制。结果表明,500℃下制备的核桃青皮生物炭(WP500)比表面积最大,对Cd2+的吸附效果最佳;当Cd2+的初始质量浓度为100 mg/L,WP500的最佳投加量为1.9 g/L;在pH为1~8,pH的升高使得WP500对Cd2+的去除率提高;温度为303.15 K时,WP500对Cd2+的吸附效果最好,对Cd2+的理论吸附量为99.994 mg/g;WP500对Cd2+的吸附符合Langmuir模型,对Cd2+的吸附动力学更符合准二级动力学模...  相似文献   

2.
层迭灵芝子实体及其制备炭吸附Cd2+的研究   总被引:1,自引:0,他引:1  
以大型真菌层迭灵芝(Ganoderma lobatum)子实体及制备炭作为吸附材料用于吸附Cd2+,研究了吸附剂用量、初始pH值、反应时间、初始Cd2+质量浓度对吸附的影响。结果表明,当Cd2+质量浓度为10 mg/L时,层迭灵芝子实体及制备炭吸附Cd2+的最佳条件为吸附剂用量0.2 g,pH值为7,吸附时间为480 min,在此条件下Cd2+最大去除率分别为94.50%和92.75%。子实体对Cd2+的吸附速率显著高于制备炭,但子实体和制备炭吸附Cd2+的吸附能力之间无显著差异。采用Langmuir和Freundlich等温吸附模型研究子实体和制备炭吸附Cd2+的过程,子实体对Cd2+的吸附过程符合Freundlich模型,而制备炭更符合Langmuir模型。吸附动力学研究表明子实体和制备炭对Cd2+的吸附过程均符合准二级动力学模型。  相似文献   

3.
以稻秆(RS)、稻壳(RH)、木屑(SD)为原料,在小型流化床实验台上制备生物炭,分析了原料种类和热解温度(400℃、500℃、600℃)对生物炭理化性质及吸附Cd2+性能的影响规律,并定性和定量分析了吸附过程中的作用机制。实验结果表明:准二级动力学方程和Langmuir方程能够较好地描述生物炭样品对Cd2+的吸附过程。生物炭RS500的平衡吸附量达到30.19mg/g,远远高于生物炭SD500,其中无机矿物的离子交换和沉淀反应吸附贡献值为24.95mg/g,是主导吸附机制;而生物炭SD500吸附Cd2+过程中,无机矿物和π键的贡献百分比分别为49.70%和38.21%。随着热解温度的升高,生物炭吸附Cd2+过程中含氧官能团的络合反应不断削弱而Cd2+-π键作用不断增强;稻秆炭和稻壳炭中无机矿物的吸附贡献值则呈先上升后下降的趋势,并在500℃热解温度下达到最大值。生物炭样品吸附Cd2+的作用机制中,离子交换和沉淀反应占比最大,Cd2+-π键作用次之,络合反应最小。  相似文献   

4.
以污水处理厂剩余污泥为原料制备生物炭是富有潜力的剩余污泥资源化途径。利用剩余污泥制备了生物炭,将其用于处理废水中的有机染料活性黑5,通过调整制备工艺参数,考察了粒径、反应温度和投加量对污泥基生物炭吸附性能的影响,并对其结构和形貌进行了研究,结果表明:原料污泥粒径、反应温度对污泥基生物炭吸附性能均有明显影响,最佳制备工艺条件为采用0.074 nm(200目)粒径污泥颗粒、反应温度450℃经马弗炉焚烧制取;污泥基生物炭投加量为7 g/L时,对50 mg/L模拟废水中活性黑5染料的去除率可达到79.66%,吸附量为5.7 mg/g,对100 mg/L模拟废水中活性黑5染料的去除率可达到68.76%,吸附量为9.8 mg/g。  相似文献   

5.
为了定量描述生物炭中有机与无机组分对Pb2+和Cd2+吸附贡献率,采用慢速热解法在不同温度下制备稻壳生物炭(Biochar,BC),并分别经水洗、酸洗处理去除水溶性组分(Water-soluble Matter,WM)和酸溶性组分(Acidsoluble Matter,AM),通过批量试验,定量计算不同组分对Pb2+和Cd2+吸附的贡献率。吸附动力学和等温吸附结果表明稻壳生物炭主要依靠化学吸附去除Pb2+和Cd2+。生物炭不同组分对Pb2+的吸附贡献率大小依次为WM(44.0%~54.5%)>AM(28.5%~31.0%)>OM(14.5%~27.6%),对于Cd2+则是WM(49.0%~61.0%)>AM(25.9%~29.0%)>OM(13.1%~22.0%),说明无机组分控制了Pb2+和Cd2+吸附过程,其中离子交换和表面沉淀是稻壳生物炭吸...  相似文献   

6.
用Fe3O4对谷壳生物炭进行改性得到磁性生物炭。利用SEM、XRD对磁性生物炭进行表征,并通过响应面优化和共吸附实验探究该生物炭在共吸附系统中对As3+和Cd2+的吸附性能。结果表明,在pH为5.0、镉(砷)初始质量浓度分别为10 mg/L、吸附剂质量浓度为1 g/L时,镉和砷去除率达到最大。在共吸附实验中,As3+和Cd2+共存时,Cd2+质量浓度大于20 mg/L时会抑制生物炭对As3+的吸附,10 mg/L As3+与生物炭达到平衡后可以使50 mg/L Cd2+的吸附量由17.44 mg/g增加到31.91 mg/g,说明砷和镉之间存在协同作用,该协同作用是由于镉、砷与四氧化三铁形成了B型三元表面配合物,增大了镉的吸附量。  相似文献   

7.
以咖啡壳为原料、KOH为化学活化剂制备高性能活性炭,在单因素试验探索活化时间、活化温度和碱炭比对活性炭碘吸附值影响的基础上,运用响应面法进行活化工艺参数优化。通过对模型优化确定最佳工艺参数为活化时间5 min、活化温度950℃和碱炭比(KOH和咖啡壳炭化料质量比,下同)4∶1;该条件下制备的活性炭的碘吸附值为2 214 mg/g(实验值),和预测值(2 209.5 mg/g)基本相符,验证了模型的有效性。  相似文献   

8.
分别通过磷酸、氢氧化钾、铁及微波对小麦秸秆生物炭进行改性,探究改性生物炭投加量、溶液初始pH及重金属离子浓度对重金属Pb2+及Cd2+的吸附影响及改性生物炭对重金属的吸附机理。结果表明,磷酸及氢氧化钾改性使生物炭表面坍塌且孔隙结构连通,铁改性使比表面积降低,微波改性使生物炭产生少量孔隙。磷酸改性促进—OH及■的生成,氢氧化钾及铁改性促进—OH的生成,微波改性对生物炭基团的影响较小。改性方法的优异性依次为磷酸改性、铁改性、氢氧化钾改性及微波改性,改性生物炭添加量的增加能够增强对于重金属的吸附,溶液pH为弱碱性时对于Pb2+的吸附效果最佳,Cd2+的吸附效果随着溶液pH增加而增大,Langmuir等温吸附方程能较好反映改性生物炭对于Pb2+及Cd2+的吸附。  相似文献   

9.
采用水热合成法制备磁性生物炭,利用XRD、FTIR和BET分析磁性生物炭的结构、官能团种类和比表面积,并研究磁性生物炭对Pb(2+)、Cd(2+)、Cd(2+)的吸附机理。结果表明,磁性生物炭含有丰富的含氧官能团和芳香结构,磁性物质为Fe_3O_4颗粒。Pb(2+)的吸附机理。结果表明,磁性生物炭含有丰富的含氧官能团和芳香结构,磁性物质为Fe_3O_4颗粒。Pb(2+)、Cd(2+)、Cd(2+)在磁性生物炭上的吸附是一个高温自发、吸热且熵增的过程,其吸附过程符合准二级动力学方程,表明化学吸附占据优势,吸附过程是由液膜扩散和颗粒内扩散共同控制。Pb(2+)在磁性生物炭上的吸附是一个高温自发、吸热且熵增的过程,其吸附过程符合准二级动力学方程,表明化学吸附占据优势,吸附过程是由液膜扩散和颗粒内扩散共同控制。Pb(2+)在磁性生物炭的吸附机制,主要与含氧官能团(—COOH、—OH、C—O—C)的络合作用和π电子的配位作用有关,还存在氧化还原反应。磁性生物炭吸附Cd(2+)在磁性生物炭的吸附机制,主要与含氧官能团(—COOH、—OH、C—O—C)的络合作用和π电子的配位作用有关,还存在氧化还原反应。磁性生物炭吸附Cd(2+)的机制,主要与—COOH、—OH和π电子的络合作用有关,C—O—C和氧化还原反应不参与磁性生物炭对Cd(2+)的机制,主要与—COOH、—OH和π电子的络合作用有关,C—O—C和氧化还原反应不参与磁性生物炭对Cd(2+)的吸附。  相似文献   

10.
以大宗农业废弃物玉米秸秆为原料, 借助高温焙烧制得了玉米秸秆生物炭, 并通过对水中铅镉的吸附实验, 考察了高热解温度生物炭的重金属脱除性能。结果显示: 800 ℃焙烧所得玉米秸秆生物炭以块状及棒状形态为主, 孔径以微孔居多, 灰分中碱金属及碱土金属占比较大; 在25 ℃、pH值4、960 min、Pb2+、Cd2+初始质量浓度分别为429.24和280.34 mg/L时, 生物炭对Pb2+和Cd2+最大吸附量分别为94.79和24.47 mg/g; 该去除过程满足准二级动力学方程、Freundlich等温线模型, 在铅镉初始质量浓度均为150 mg/L时, 所得平衡吸附容量可达69.0、24.4 mg/g; 热力学分析显示, 该去除过程为吸热熵增过程; 而共存离子吸附实验显示, 铅离子对镉离子存在明显的拮抗作用。高热解温度玉米秸秆生物炭对水中铅镉的去除过程是物理吸附与化学沉淀共同作用的结果。  相似文献   

11.
关君男  彭书传  田丰 《广东化工》2024,(4):44-48+86
本研究以栗子壳为原料,以KOH为活化剂,通过一步法和二步法热解成功合成了两种高比表面积的多孔生物炭KBC7001和KBC7002。产品表现出对水体Cd2+优异的去除能力,并进行了一系列批量吸附实验和表征实验,研究其活化机制的差异和两种改性生物炭的吸附机制。结果表明,KBC7001具有较大的比表面积(1887.04 m2/g)和较丰富的孔隙结构,平均孔径为1.07 nm,孔隙大小主要分布在0.5~2 nm之间。KBC7001在308K时对Cd2+的理论最大吸附量为83.86 mg/g。KBC7001和KBC7002对Cd2+的吸附是一种自发的吸热反应,4 h内达到吸附平衡。KOH的一步活化促进了O元素在生物炭上的固定化,使KBC7001表面形成了更多的含氧官能团,参与了吸附过程。循环再生实验和模拟废水吸附实验表明,KBC7001具有更稳定的吸附性能。此外,KBC7001主要通过静电吸引、孔隙填充、沉淀-络合和离子交换来固定Cd2+。  相似文献   

12.
为了有效去除废水中Cu2+,以牛粪为原料,制取生物炭,采用等温吸附法及动力学吸附法研究生物炭对废水中的Cu2+的吸附效果,并通过XRD、FTIR、BET与元素分析等进行表征。结果表明:热解温度、时间、pH是影响生物炭产率及吸附量的因素。700℃制备的牛粪生物炭(CDB700[2h])对废水中的Cu2+吸附量是最高,达到了0.623 mg·g-1,去除率达到了99.7%。说明,CDB700[2h]具有作为废水中Cu2+吸附材质的潜力,本研究为生物炭去除废水中重金属污染的修复提供了理论依据与应用参考。  相似文献   

13.
水体中存在Cd2+会危害人体健康,Cd2+污染的去除是一个需要解决的问题。以羟基磷灰石(HAP)和低成本的木醋液(WV)为原料,通过水浴搅拌制备了木醋液改性羟基磷灰石(WV-HAP),并将其应用于去除溶液中Cd2+的研究。利用XRD、FT-IR、SEM、BET对WV-HAP进行了表征,通过吸附试验探究溶液初始pH、初始离子浓度、接触时间和温度对WV-HAP对Cd2+吸附特性的影响。结果表明:在吸附剂添加量2 g/L、温度298 K、Cd2+初始浓度100 mg/L、pH=5、吸附时间4 h时,WV-HAP的平衡吸附容量为46.43 mg/g;WV-HAP对Cd2+的吸附过程符合Langmuir等温吸附模型和准二级动力学模型;热力学研究表明吸附过程是吸热的;通过对吸附Cd2+前后的WV-HAP进行表征,发现吸附机制主要是表面吸附、孔道吸附和离子交换。WV-HAP表现出优于HAP的对溶液中Cd2+的吸附能力,是一种潜在的Cd2+吸附材料。  相似文献   

14.
以松木(SM)和楠木(NM)木屑为原料,分别在300、450、600℃下制备了6种木屑生物炭,通过扫描电镜、孔径与比表面积分析仪、傅里叶红外光谱仪和热重分析仪对生物炭的理化性质进行了表征,并探讨了金属离子(Na+、K+、Ca2+)和pH值对生物炭吸附Pb2+的影响,同时研究了其吸附动力学。研究结果表明:在相同制备条件下,随着热解温度升高,生物炭的比表面积和孔容积增大,其最可几孔径呈下降趋势,楠木生物炭的比表面积(23.2~311.4 m2/g)均大于松木生物炭(17.6~210.6 m2/g);FT-IR分析表明,热解温度的升高使生物炭芳香化程度增强,有助于生物炭与Pb2+形成稳定的结构。楠木生物炭对Pb2+吸附量(46.92~77.12 mg/g)高于松木生物炭(34.90~62.79 mg/g);溶液中的Na+和K+不利于生物炭对Pb2+的吸附,Ca2+有利于Pb2+的去除。生物炭对Pb2+的吸附均符合准二级动力学方程,颗粒内扩散模型分析表明吸附受多种因素共同影响。  相似文献   

15.
以农业废弃物锯末为材料制备生物炭,用铁锰氧化物对锯末生物炭改性,探究某吸附As和Cd的能力与机制。结果表明,改性生物炭增大了孔径和比表面积,增加了更多的吸附点位,尤其是铁、锰、生物炭的质量比为1∶3∶15的吸附剂吸附效果最好,对于砷和镉的平衡吸附量分别增大了35倍和5倍,最大吸附量分别为7.452,17.053 mg/g。低pH环境下,Cd(2+)的吸附受到抑制,而As(2+)的吸附受到抑制,而As(3+)受pH影响较小。Cd和As吸附符合准二级吸附动力学模型,As和Cd的吸附热力学符合Langmuir模型,这表明吸附过程为单层吸附。  相似文献   

16.
郭巧静 《河南化工》2022,(10):24-26
使用三聚硫氰酸三钠盐(TMT)作吸附剂,对Cd2+、Hg2+水溶液(浓度100 mg/L)进行吸附处理。研究了溶液p H值、温度、TMT用量以及吸附时间对重金属离子去除率的影响,得到了吸附Cd2+、Hg2+的最佳吸附条件,并采用能谱仪对其沉淀物进行了分析表征。结果表明:吸附剂的使用量为60 mg,p H值为7,吸附时间为5 h时,吸附效果最佳。当吸附温度为30℃时,Cd2+的去除率达到98.88%。吸附温度为20℃时,Hg2+的去除率达到97.44%。  相似文献   

17.
慕苗  段珍珍  高晶晶  白瑞  白雪  亢玉红 《当代化工》2023,(3):518-522+526
采用单因素和响应曲面法对兰炭基活性炭制备工艺条件进行优化,分别讨论活化温度、活化时间和浸渍比对活性炭亚甲基蓝吸附值和收率的影响。实验得出活化影响因素由大到小顺序为:活化温度、活化时间、浸渍比。最佳工艺条件为:活化温度850℃、活化时间12h、浸渍比3∶1。最佳条件下亚甲基蓝吸附值1 224.9 mg·g-1,收率65.89%。  相似文献   

18.
生物炭因其比表面积大和孔隙结构丰富等的特点,可作为一种天然吸附材料,目前被广泛应用于农业、环境和能源等多方面领域。本实验利用丢弃的核桃壳在不同温度条件下制备成生物炭,并探究将其用以吸附废水中重金属镍离子的吸附效果。实验结果表明:核桃壳基生物炭在700℃热解温度下的比表面积最大;静态吸附实验中,生物炭对镍离子有良好的吸附性能,并且对镍离子的吸附过程符合Langmuir吸附等温模型。  相似文献   

19.
《应用化工》2022,(7):1262-1266
废弃贻贝壳洗净、去杂,粉碎、过筛、煅烧,得到高比表面积紫贻贝壳粉用于吸附恶霉灵。结果表明,高比表面积紫贻贝壳粉的最佳制备条件为:颗粒粒径为80目,煅烧温度为1 000℃,煅烧时间为60 min。在此条件下,紫贻贝壳粉的比表面积为7.265 1 m2/g,对恶霉灵的最大吸附容量为46 mg/g。可开发成一种天然的脱农药果蔬洗涤剂。  相似文献   

20.
以核桃壳为原料,选用KOH高温干法活化工艺制备出了核桃壳基活性炭。研究了炭化温度、碱料比、活化时间、活化温度、酸洗工艺对核桃壳基活性炭碘吸附值的影响,并用正交试验确定了核桃壳基活性炭的最佳制备工艺。结果表明,在炭化温度为400℃,碱料比为3∶1,活化温度为600℃,活化时间为50min时制备的核桃壳基活性炭的碘吸附值最好,其碘吸附值为1393mg·g~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号