首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epoxy resin used as the bonding agent in carbon fiber-reinforced polymer (CFRP) strengthening systems was modified by the infusion of multiwalled carbon nanotubes (MWCNTs). Two types of surfactants, Triton X-100 and C12E8, were used to disperse the nanotubes in the epoxy resin employing ultrasonic mixing. Dynamic mechanical analysis and tensile tests were conducted to study the effect of the surfactant-assisted dispersion of nanotubes on the thermal and mechanical properties of epoxy composites. The morphology of the epoxy composites was interpreted using scanning electron microscopy (SEM). Moreover, the effect of surfactant treatment on the structure of nanotubes was investigated by Fourier transform infrared (FT-IR). Based on the experimental results, the tensile strength and the storage modulus of the epoxy resin were increased by 32% and 26%, respectively, by the addition of MWCNTs. This was attributed to the homogeneous dispersion of nanotubes in the epoxy resin according to the SEM images. Another reason for the enhancement in the tensile properties was the reinforced nanotube/epoxy interaction as a result of the surfactant anchoring effect which was proved by FT-IR. A moderate improvement in the glass transition temperature (T g) was recorded for the composite fabricated using Triton X-100, which was due to the restricted molecular motions in the epoxy matrix. To characterize the temperature-dependent tensile behavior of the modified epoxy composites, tensile tests were conducted at elevated temperatures. It was revealed that the MWCNT modification using surfactant substantially improves the tensile performance of the epoxy adhesive at temperatures above the T g of the neat epoxy.  相似文献   

2.
Epoxy/multiwall carbon nanotubes (MWCNTs) composites were investigated using three different non-ionic surfactants (BYK-110, Tween-80 and Nonidet-P40) separately as a modifier. The role of surfactants in dispersion of MWCNTs in the epoxy matrix was studied. Among three surfactants used, performance of Nonidet-P40 was found to be the best in improving the thermomechanical properties of the epoxy resin and achieving good dispersion of MWCNTs. The good dispersion of Nonidet-P40 modified MWCNT in the epoxy matrix is a result of the π–π interaction between π electrons of the Nonidet-P40 and π electron clouds of MWCNTs as well as H-bonding interaction between of Nonidet-P40 and the epoxy matrix. This type of interaction does not disturb the π electron clouds of MWCNTs as opposed to chemical functionalization strategy.  相似文献   

3.
Surface functionalization of multiwall carbon nanotubes (MWCNTs) was carried out by introducing a ylide group containing anchored phenol structures. Epoxy nanocomposites filled with modified and pristine carbon nanotubes were prepared, and their mechanical, electrical, and thermal properties were evaluated. Mechanical properties such as tensile strengths and Young’s moduli of the epoxy nanocomposites increased significantly with the addition of the modified MWCNTs compared to the pristine MWCNTs, due to the strong interaction between the modified MWCNTs and the epoxy matrix. Scanning electron microscopy of the fractured epoxy systems revealed that the functionalized MWCNTs were finely dispersed in the matrix, as opposed to the pristine carbon nanotubes. The epoxy/functionalized MWCNT nanocomposite had a lower surface electrical resistance than the epoxy/pristine MWCNT nanocomposite, confirming the effect of functionalization.  相似文献   

4.
Adsorption isotherms of four different surfactants, sodium dodecyl sulfate (SDS), sodium dodecyl benzyl sulfonate, benzethonium chloride and Triton X-100 were measured on multi-wall carbon nanotubes (MWCNT) in water. With the surfactant SDS, the isotherms were also measured on single-wall carbon nanotubes (SWCNT) as well as on MWCNT under various ionic strength and temperature conditions. The nature of the polar head had only little influence on adsorption which was mainly driven by hydrophobic interactions. However, the outcome of the dispersion experiment was dependent on the purity of the carbon nanotubes. Using these results, it was possible to prepare concentrated colloidaly stable dispersions of MWCNTs in water (c = 32 g/L). Conducting MWCNT/polymer composite films could then readily be prepared by simple formulation of the MWCNTs with a polymeric dispersion.  相似文献   

5.
The effects of different surfactants on the properties of multiwalled carbon nanotubes/polypropylene (MWCNT/PP) nanocomposites prepared by a melt mixing method have been investigated. Sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS) were used as a means of noncovalent functionalization of MWCNTs to help them to be dispersed uniformly into the PP matrix. The effects of these surfactant‐treated MWCNTs on morphological, rheological, thermal, crystalline, mechanical, and electrical properties of MWCNT/PP composites were studied using field emission scanning electron microscopy, optical microscopy, rheometry, tensile, and electrical conductivity tests. It was found that the surfactant‐treatment and micromixing resulted in a great improvement in the state of dispersion of MWCNTs in the polymer matrix, leading to a significant enhancement of Young's modulus and tensile strength of the composites. For example, with the addition of only 2 wt % of SDS‐treated and NaDDBS‐treated MWCNTs, the Young's modulus of PP increased by 61.1 and 86.1%, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
This study describes the influence of triethylenetetramine (TETA) grafting of multi‐walled carbon nanotubes (MWCNTs) on the dispersion state, interfacial interaction, and thermal properties of epoxy nanocomposites. MWCNTs were first treated by a 3:1 (v/v) mixture of concentrated H2SO4/HNO3, and then TETA grafting was performed. Chemically grafted MWCNT/bisphenol‐A glycidol ether epoxy resin/2‐ethyl‐4‐methylimidazole nanocomposites were prepared. TETA grafting could establish the connection of MWCNTs to the epoxy matrix and transform the smooth and nonreactive MWCNT surface into a hybrid material that possesses the characteristics of both MWCNTs and TETA, which facilitates homogeneous dispersion of MWCNTs and improves nanotube‐epoxy interfacial interaction. Therefore, the impact property, glass transition temperature, thermal stability, and thermal conductivity of epoxy nanocomposites are enhanced. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

7.
Multiwall carbon nanotubes (MWCNTs) with liquid‐like behavior at room temperature were prepared with sulfonic acid terminated organosilanes as corona and tertiary amine as canopy. The liquid‐like MWCNT derivative had low viscosity at room temperature (3.89 Pa s at 20°C) and exhibited non‐Newtonian shear‐thinning behavior. The weight fraction of MWCNT in the derivative was 16.72%. The MWCNT derivative showed very good dispersion in organic solvents, such as ethanol and acetone. The liquid‐like MWCNT derivative was incorporated into epoxy matrix to investigate the mechanical performance of the nanocomposites and the distribution of MWCNTs in the matrix. When the liquid‐like MWCNT derivative content was up to 1 wt %, the flexural strength and impact toughness of composites were 12.1 and 124% higher than the pure epoxy matrix, respectively. Transmission electron microscope (TEM) confirmed the very good dispersion of the liquid‐like MWCNT derivative in epoxy matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2217–2224, 2013  相似文献   

8.
The deposition behaviour of carbon black on shrink-resist-treated wool fabric, and on untreated wool, in the presence of different mixtures of anionic and non-ionic surfactants has been investigated. Two types of surfactant mixtures were studied; sodium dodecylbenzenesulphonate and sodium dioctylsulphosuccinate were used as anionic surfactants and Triton X-100 as a non-ionic surfactant. An electrokinetic study was also carried out, under similar conditions; the zeta potential was obtained, which was related to the amount of deposition found. From these zeta potential measurements the surface charge density was determined.  相似文献   

9.
在超声改善MWCNT在不饱和聚酯树脂的分散性的基础上,通过非共价官能团化的方法引入处理过的天然填料柠檬酸化纤维素(CNFCA)来增强不饱和聚酯树脂,并采用偏光显微镜、旋转流变仪、透射电子显微镜、扫描电子显微镜、万能试验机等对不饱和聚酯树脂纳米复合材料的结构和性能进行了研究.结果表明,MWCNT的加入可以使不饱和聚酯复合...  相似文献   

10.
In this work, nanocomposites with simultaneous dispersion of multiwalled carbon nanotubes (MWCNT) and montmorillonite clays in an epoxy matrix were prepared by in situ polymerization. A high energy sonication was employed as the dispersion method, without the aid of solvents in the process. The simultaneous dispersion of clays with carbon nanotubes (CNT) in different polymeric matrices has shown a synergic potential of increasing mechanical properties and electrical conductivity. Two different montmorillonite clays were used: a natural (MMT‐Na+) and an organoclay (MMT‐30B). The nanocomposites had their electrical conductivity (σ) and dielectric constant (εr) measured by impedance spectroscopy. The sharp increase in electrical conductivity was found between 0.10 and 0.25 wt% of the MWCNTs. Transmission electron microscopy (TEM) of the samples showed a lower tendency of MWCNT segregation on the MMT‐30B clay surface, which is connected to intercalation/exfoliation in the matrix, that generates less free volume available for MWCNTs in the epoxy matrix. Data from electrical measurement showed that simultaneously adding organoclay reduces the electrical conduction in the nanocomposite. Moreover, conductivity and permittivity dispersion in low frequency suggest agglomeration of nanotubes surrounding the natural clay (MMT‐Na+) particles, which is confirmed by TEM. POLYM. COMPOS., 37:1603–1611, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
A spray drying approach has been used to prepare polyurethane/multiwalled carbon nanotube (PU/MWCNT) composites. By using this method, the MWCNTs can be dispersed homogeneously in the PU matrix in an attempt to improve the mechanical properties of the nanocomposites. The morphology of the resulting PU/MWCNT composites was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM observations illustrate that the MWCNTs are dispersed finely and uniformly in the PU matrix. X‐ray diffraction results indicate that the microphase separation structure of the PU is slightly affected by the presence of the MWCNTs. The mechanical properties such as tensile strength, tensile modulus, elongation at break, and hardness of the nanocomposites were studied. The electrical and the thermal conductivity of the nanocomposites were also evaluated. The results show that both the electrical and the thermal conductivity increase with the increase of MWCNT loading. In addition, the percolation threshold value of the PU composites is significantly reduced to about 5 wt % because of the high aspect ratio of carbon nanotubes and exclusive effect of latex particles of PU emulsion in dispersion. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
In this study, the dispersion of multi‐walled carbon nanotubes (MWCNTs) in epoxy was facilitated by an anionic surfactant, linear alkyl benzene sulfonic acid. Different types of composites were prepared using a fixed amount of MWCNTs (0.5 wt%), in absence of solvent/surfactant, in presence of solvent and solvent/surfactant. The composites were characterized using Fourier transform infrared spectrophotometer, thermogravimetric analyzer (TGA), differential scanning calorimeter (DSC), universal testing machine, pendulum impact system, X‐ray diffraction, and scanning electron microscope. The epoxy/MWCNTs nanocomposite exhibited significantly higher mechanical properties due to the better dispersion in the presence of the surfactant. The tensile strength and flexural strength were increased by 75% and 108%, respectively. The thermal, structural, and morphological analyses were also excellent as a result of the better dispersion. In addition, the solvent‐surfactant behavior was hypothesized for the epoxy/MWCNTs system. POLYM. ENG. SCI., 59:E80–E87, 2019. © 2018 Society of Plastics Engineers  相似文献   

13.
Biopolyurethane nanocomposites reinforced with silane‐modified multiwalled carbon nanotubes (s‐MWCNT) were successfully prepared. The carbon nanotube surfaces were modified by means of functional amine groups via ozone oxidation followed by silanization. The surface structure of the s‐MWCNTs was characterized by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and thermogravimetric analysis. The s‐MWCNTs were incorporated into a vegetable oil‐based polyurethane (PU) network via covalent bonding to prepare PU nanocomposites. The effect of s‐MWCNT loading on the morphology, thermomechanical, and tensile properties of the PU nanocomposites was studied. It was determined that the s‐MWCNTs were dispersed effectively in the polymer matrix and that they improved the interfacial strength between the reinforcing nanotubes and the polymer matrix. Storage modulus, glass transition temperature, Young's modulus, and tensile strength of the nanocomposites increased with increasing s‐MWCNT loading up to 0.8%. However, increasing the s‐MWCNT content to 1.2 wt % resulted in a decrease in thermomechanical properties of the PU nanocomposites. This effect was attributed to the fact that at high s‐MWCNT contents, the increased number of amine groups competed with the polyol's hydroxyl groups for isocyanate groups, causing a decrease in the integrity of the PU matrix. High s‐MWCNT contents also facilitated aggregation of the nanotubes, causing a decrease in thermomechanical properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42515.  相似文献   

14.
Multi‐walled carbon nanotubes (MWCNTs), surface‐treated via chemical functionalization, i.e., oxidation and amidation, were used to reinforce diglycidylether of bisphenol F (DGEBF) epoxy resin. The effects of the functionalization on the dispersion stability, rheological properties, and fracture toughness of DGEBF/MWCNT composites were investigated. The dispersion homogeneity of the MWCNTs in the epoxy matrix improved after functionalization. In addition, isothermal rheology measurements revealed that the DGEBF/dodecyl amine‐functionalized MWCNT (D‐MWCNT) composite had a longer gel time and higher activation energy of cross‐linking than the DGEBF/acid‐treated MWCNT (A‐MWCNT) composite. The fracture toughness of the former was also significantly higher than that of the latter; this resulted from the relatively high dispersion stability of the D‐MWCNTs in the epoxy matrix, owing to the presence of alkyl groups on the D‐MWCNT surface. POLYM. ENG. SCI., 55:2676–2682, 2015. © 2015 Society of Plastics Engineers  相似文献   

15.
The preparation of thermoplastic nanocomposites of waterborne polyurethane (WBPU) and multiwall carbon nanotubes (MWCNTs) via an in situ polymerization approach is presented. The effects of the presence and content of MWCNTs on the morphology and thermal, mechanical and electrical properties of the nanocomposites were investigated. Carbon nanotubes were modified with amide groups in order to enhance their chemical affinity towards WBPU. Thermogravimetric studies show enhanced thermal stability of the nanocomposites. Scanning and transmission electronic microscopy images prove that functionalized carbon nanotubes can be effectively dispersed in WBPU matrix. Mechanical properties reveal that Young's modulus and tensile strength tend to increase when appropriate amounts of MWCNTs are loaded due to the reinforcing effect of the functionalized carbon nanotubes. Thermal properties show an increase in the glass transition temperature and storage modulus with an increase in MWCNT content. X‐ray diffraction reveals better crystallization of the WBPU in the presence of MWCNTs. The WBPU/MWCNT nanocomposite film containing 1 wt% of MWCNTs exhibits a conductivity nearly five orders of magnitude higher than that of WBPU film. © 2017 Society of Chemical Industry  相似文献   

16.
Yi Li  Jingcheng Hao 《Carbon》2006,44(13):2664-2670
The electrochemical behavior of glassy carbon (GC) electrodes coated with multi-walled carbon nanotube (MWCNT)/surfactant films was studied in an ionic liquid and a phosphate buffer solution (pH = 6.86), using cyclic voltammetry. The dispersion of MWCNTs in different media was investigated by scanning and transmission electron microscopy. Cast films of MWCNT/zwitterionic dodecyldimethylamine oxide on a GC electrode show a typical redox couple in phosphate buffer solution, which is better than that of MWCNT/anionic sodium dodecyl sulfate and cationic alkyltrimethylammonium bromide. However in the ionic liquid, 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), the GC electrode modified by MWCNT/cationic surfactant films shows a well-defined irreversible reduction of MWCNTs. The cyclic voltammograms clearly show that the surfactant hydrophilic group plays an important role in the electrochemical behavior of the MWCNTs. The electrolytes also have an important effect. In an ionic liquid, the strong binding of the ionic liquid cations with the MWCNTs may change the structure of the modified films and lead to changes of electrochemical behavior.  相似文献   

17.
A remarkable synergetic effect between the multi-graphene platelets (MGPs) and multi-walled carbon nanotubes (MWCNTs) in improving the mechanical properties and thermal conductivity of epoxy composites is demonstrated. Stacking of individual two-dimensional MGPs is effectively inhibited by introducing one-dimensional MWCNTs. Long and tortuous MWCNTs can bridge adjacent MGPs and inhibit their aggregation, resulting in a high contact area between the MGP/MWCNT structures and the polymer matrix. Scanning electron microscope images of the fracture surfaces of the epoxy matrix showed that MWCNT/MGP hybrid nanofillers exhibited higher solubility and better compatibility than individual MWCNTs and MGPs did. The tensile strength of GD400-MWCNT/MGP/epoxy composites was 35.4% higher than that of the epoxy alone, compared to only a 0.9% increase in tensile strength for MGP/epoxy composites over the epoxy compound. Thermal conductivity increased by 146.9% using GD400-MWCNT/MGP hybrid fillers and 23.9% for MGP fillers, compared to non-derivatised epoxy.  相似文献   

18.
A cryogenic ball‐milling process to produce polymer/CNT nanocomposites was investigated. Linear low density polyethylene was used as the matrix material and 1 wt % of multiwalled carbon nanotubes (MWCNT) was used as reinforcement. The influence of the milling time and balls size was evaluated. The morphology of the nanocomposite and the degree of dispersion of the MWCNTs were studied using scanning electron microscopy (SEM), visual inspection, and light transmission microscopy; ropes as well as aggregates of MWCNTs were observed, and there was evidence of wetting of the nanotubes by the matrix polymer. An increase of up to 28% in the elastic modulus (determined by tensile testing) with respect to the matrix was obtained. Differential scanning calorimetry (DSC) analysis showed evidence of increase in the degree of crystallization, a result of the nucleating capability of the carbon nanotubes in the matrix. The degradation temperature of the nanocomposites does not show significant variations with respect to the unfilled polymer. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

19.
In this study, relatively large amounts of polypropylene (PP) and ethylene–propylene–diene (EPDM) were melt‐mixed with multiwalled carbon nanotubes (MWCNTs). Although the melt‐compounding method has many advantages, the uniform dispersion of carbon nanotubes in the polymer matrix is still the most challenging task. Because the electrical conductivity of composites is strongly influenced by the filler's state of dispersion and the extent of filler breakage during processing, the effects of the viscosity and processing conditions, such as the mixing time, rotor speed, and cooling rate, on the surface resistivity were studied. The PP/MWCNT nanocomposites displayed a high dependence of surface resistivity on the cooling rate, and the EPDM/MWCNT nanocomposites displayed a higher surface resistivity at the same content of MWCNTs and less dependence of surface resistivity on the cooling rate compared with PP/MWCNT nanocomposites. The increased surface resistivity of the EPDM/MWCNT nanocomposites was observed when EPDM with higher viscosity was used to prepare the EPDM/MWCNT nanocomposites. By increasing the rotor speed, lower surface resistivity was obtained in the PP/MWCNT nanocomposites. However, by increasing the rotor speed, a higher surface resistivity was obtained in the EPDM/MWCNT nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Multiwalled carbon nanotubes (MWCNTs), both oxidized and amine functionalized (triethylenetetramine—TETA), have been used to improve the mechanical properties of nanocomposites based on epoxy resin. The TGA and XPS analysis allowed the evaluation of the degree of chemical modification on MWCNTs. Nanocomposites were manufactured by a three‐roll milling process with 0.1, 0.5, and 1.0 wt % of MWCNT–COOH and MWCNT–COTETA. A series of nanocomposites with 5.0 wt % of reactive diluent was also prepared. Tensile and impact tests were conducted to evaluate the effects of the nanofillers and diluent on the mechanical properties of the nanocomposites. The results showed higher gains (258% increase) in the impact strength for nanocomposites manufactured with aminated MWCNTs. Optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to investigate the overall filler distribution, the dispersion of individual nanotubes, and the interface adhesion on the nanocomposites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42587.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号