首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dodecylbenzenesulfonic acid (DBSA) doped polyaniline (PANDR) has been synthesized by redoping method. Inorganic silver nanoparticles were incorporated in THF solution of PANDR (PANDS) and then mixed with PVC solution to prepare PANDS/PVC nanocomposites. FTIR spectroscopy indicated that silver nanoparticles reside more close to imine nitrogen of PANDS. Transmission electron microscopy (TEM) confirmed the formation and dispersion of silver nanoparticles in polymer matrix having average size of ~20 nm. Incorporation of inorganic metal silver nanoparticles has improved the mechanical properties of nanocomposite films as compared to pure polymer blends. Addition of silver nanoparticles in the blends reduces the charge trapping centres and increases the conducting channels; as a result a decrease in the real part of impedance has been observed.  相似文献   

2.
The morphology and thermal stability of melt‐mixed poly(lactic acid) (PLA)/poly(hydroxybutyrate‐co‐valerate) (PHBV) blends and nanocomposites with small amounts of TiO2 nanoparticles were investigated. PLA/PHBV at 50/50 w/w formed a co‐continuous structure, and most of the TiO2 nanoparticles were well dispersed in the PLA phase and on the interface between PLA and PHBV, with a small number of large agglomerates in the PHBV phase. Thermogravimetric analysis (TGA) and TGA–Fourier‐transform infrared spectroscopy was used to study the thermal stability and degradation behavior of the two polymers, their blends, and nanocomposites. The thermal stability of PHBV was improved through blending with PLA, whereas that of the PLA was reduced through blending with PHBV, and the presence of TiO2 nanoparticles seemingly improved the thermal stability of both polymers in the blend. However, the degradation kinetics results revealed that the nanoparticles could catalyze the degradation process and/or retard the volatilization of the degradation products, depending on their localization and their interaction with the polymer in question. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42138.  相似文献   

3.
Thermal stability of PVC blends with chlororubber-20-graft polyblend-styrene-acrylonitrile [CR-20gp-SAN (2:1)] was studied by HCI evolution techniques and thermogravimetry under isothermal condition. The thermal stability of PVC/CR-20gp-SAN (2:1) blends has been compared with those of PVC/CR-20 and PVC/KM-365B blends. It has been observed that the thermal stability of modified PVC is less than that of unmodified PVC. The CR-20gp-SAN (2:1) modified PVC blends were found to be more stable than PVC/CR-20 blends but less stable than PVC/KM-365B blends. The rate of degradation in PVC blends were observed to be unaffected by the concentration of the modifiers, but the PVC/KM-365B blends were found to be degrading slower in comparison with PVC/CR-20 and PVC/CR-20gp-SAN (2:1) blends. The rate of degradation for PVC/CR-20 blends at lower concentrations (<10%) of modifiers is almost equal to that of PVC/CR-20-gp-SAN (2:1) blends, but more at higher concentrations of modifiers (>10%). The experimental results have been explained on the basis of the chemical nature of the modifiers and their miscibility with PVC.  相似文献   

4.
The thermal degradation of poly(vinyl chloride) (PVC) has been studied by differential scanning calorimetry (DSC). Due to crosslinking, the glass transition temperature (Tg) of PVC raises during the degradation. The thermal degradation of PVC has also been studied for heterogeneous 1:1 (w/w) blends of PVC with polystyrene (PC), poly(styrene-co-acrylonitrile) (SAN), high-impact PS (poly(styrene-g-butadiene)) (HIPS) and poly(SAN-g-butadiene) (ABS). Tg of the PVC phase raises slower during degradation in the PVC/PS-blend, whereas in the other blends the crosslinking is accelerated, due to a negative influence of the double bonds and/or the nitrile groups on the thermal stability of PVC. Since most methods use the determination of eliminated HCl to study the degradation of PVC, the DSC method is very useful in investigations on PVC-containing polymer blends, if there might be a reaction of HCl with one of the blend components.  相似文献   

5.
In the article, acrylonitrile-butadiene-styrene/polyvinyl chloride/organophilic Fe-montmorillonite (ABS/PVC/Fe-OMT) nanocomposites were prepared by melt intercalation method. In order to determine if the presence of iron ion in the structure of organophilic montmorillonite (OMT) lattice can affect thermal, flame retardance and smoke suppressant properties in the ABS/PVC blends. ABS/PVC/organophilic natural montmorillonite (Na-OMT) nanocomposites were prepared as the comparable sample. Fe-MMT and Na-MMT were treated by cetyl trimethylammonium bromide (CTAB). The information on morphologies and structures of ABS/PVC/OMT nanocomposites was obtained using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal properties of the nanocomposites were characterized by thermogravimetric analysis, and flame retardant properties were obtained via limiting oxygen index (LOI), UL-94 vertical burning test and smoke density. The nanocomposites, based on Fe-OMT, exhibited better flame retardance, better smoke suppressant properties, and lower degradation degree than those of pure ABS/PVC blends and the ABS/PVC/Na-OMT nanocomposites.  相似文献   

6.
The preparation of binary polymer blend nanocomposites with different nanomaterials is a relatively new approach to achieve desired physical, thermal, mechanical, and electrochemical properties because it has the collective effects of both polymer blending and fillers. Transition metal oxides constitute a large class among those fillers because the precursors for metal oxides are abundantly available. However, very few studies have been accomplished on incorporating transition metal oxides into binary polymer blends. In this project, cuprous oxide (CuO) nanoparticles (NPs) with a crystallite size of 24.95 nm were incorporated into poly(vinyl chloride)/poly(methyl methacrylate) (PVC/PMMA) blend, and thin films of the nanocomposites were obtained through a solution casting technique. Scanning electron microscopy, X‐ray diffraction, universal testing machine testing, thermogravimetric analysis, and cyclic voltammetry were used to study morphological, crystalline, mechanical, thermal, and electrochemical properties of the nanocomposites. Scanning electron micrographs showed that the blend was completely miscible and CuO NPs were well dispersed within the matrix. Mechanical properties greatly improved with each wt% addition of CuO NPs. Thermogravimetric analysis thermograms revealed a two‐stage degradation for neat PVC/PMMA blend and CuO/PVC/PMMA. Cyclic voltammetry results indicated a free electron transfer in neat blend that further improved with the incorporation of increasing percentage of CuO NPs. J. VINYL ADDIT. TECHNOL., 23:80–85, 2017. © 2015 Society of Plastics Engineers  相似文献   

7.
In this work, polymer nanocomposites consisting of a poly(vinyl chloride) (PVC) and polyvinylidene fluoride (PVDF) polymer network with ZnO nanoparticles as a dopant were prepared by solution casting. An XRD study of the PVC/PVDF/ZnO polymer nanocomposites shows predominantly sharp and high intensity peaks. However, the intensity and sharpness of the XRD peaks decreases with further increment in loading of ZnO (wt%), which reveals a proper intercalation of ZnO nanoparticles within the PVC/PVDF polymer system. Fourier transform infrared spectroscopy has been used to verify the chemical compositional change as a function of ZnO nanoparticle loading. TGA analysis clearly describes the thermal degradation of the pure polymer and polymer nanocomposites. The complex dielectric function, AC electrical conductivity and impedance spectra of these nanocomposites were investigated over the frequency range from 10 Hz to 35 MHz. These spectra were studied with respect to the Wagner ? Maxwell ? Sillars phenomenon in the low frequency region. Nyquist plots of the PVC/PVDF/ZnO nanocomposites were established from impedance measurements. The temperature‐dependent DC ionic conductivity obtained from the Nyquist plots follows Arrhenius behaviour. © 2016 Society of Chemical Industry  相似文献   

8.
通过热烘变色试验,对ABS/PVC合金的热稳定性进行分析。结果表明,所试验的三种PVC专用热稳定剂会加速ABS树指的热老化;当ABS/PVC合金比例为60/40时,其热稳定性较佳;CPE对合金的热烘变色有利;有机锡热稳定剂的效果最好。  相似文献   

9.
The thermal stability of poly(vinyl chloride) (PVC) and thermoplastic polyurethane (PU) blends has been studied in this work. It has been found that the PVC/PU blends possess lower thermal stability than unmodified PVC. No effect of the structure of polyurethanes or their content on the stability of PVC/PU system has been found.  相似文献   

10.
采用熔融插层法制备了聚氯乙烯/蒙脱土(PVC/MMT)插层产物,再将该产物与环氧化天然橡胶(ENR)在密炼机中进行熔融共混制备ENR/PVC/MMT共混型热塑性弹性体(TPV),研究了不同改性MMT对共混物力学性能、热稳定性以及动态力学性能的影响。结果表明:二甲基双十八烷基铵改性蒙脱土(MMT-2C18)能显著提高ENR/PVC共混型TPV的拉伸强度,无机MMT能显著提高ENR/PVC的断裂伸长率,十八烷基铵改性蒙脱土(MMT-C18)会降低TPV的拉伸强度和断裂伸长率;有机改性MMT会促进TPV中PVC的降解,使得复合材料的热稳定性降低;动态热力学分析显示,MMT可使复合材料的储能模量增加,其中有机改性MMT使材料的损耗因数(tanδ)曲线峰强降低,峰宽变宽。  相似文献   

11.
Poly(vinyl chloride) (PVC)‐based nanocomposites containing 2 wt% zinc oxide (ZnO) nanoparticles were prepared by solution casting and the effect of the PVC molecular weight (MW) on the morphology, thermal properties, and thermogravimetric behavior was studied. The addition of ZnO nanoparticles to PVCs of different MWs increased the glass transition temperature (Tg) of the resulting nanocomposites, the extent of which was dependent upon the MW of the PVC matrix. The nanocomposite samples exhibited broadened transition zones as compared with their unfilled PVC matrices. The extent of transition zone broadening was also controlled by the MW of the PVC matrix in the nanocomposites. In the absence of ZnO nanoparticles, the increase in MW of PVC had no effect on the breadth of the transition zone. The TGA results showed that the incorporation of ZnO nanoparticles into PVC matrices of different MWs accelerated the first stage weight loss via the nanoparticle catalytic effect through removal of HCL from the polymeric chains. The presence of ZnO nanoparticles lowered the second stage weight loss, and the char yield obtained for nanocomposites samples was significantly greater than that obtained for neat PVC samples. At low MWs, the presence of ZnO nanoparticles had no effect on the first stage of thermal degradation process. The presence of ZnO nanoparticles in the matrix in different nanocomposites was revealed by SEM observations, and the EDX analysis demonstrated a progressive improvement in the distribution and dispersion state of ZnO nanoparticles in the PVC‐based nanocomposites as the MW of PVC matrix gradually increased. J. VINYL ADDIT. TECHNOL., 25:E63–E71, 2019. © 2018 Society of Plastics Engineers  相似文献   

12.
Nanocomposites consisted of different quantities of silver (Ag) nanoparticles incorporated in a polystyrene (PS) matrix have been prepared by solution mixing method. Transmission electron microscopy was applied to determine the size distribution of the Ag nanoparticles, while the morphology of fractured surfaces of pure PS and Ag/PS nanocomposites was examined by scanning electron microscopy. Absorption spectra of nanocomposites were compared with theoretically calculated spectra based on the Maxwell‐Garnett effective medium theory. The influence of Ag content on thermal properties of Ag/PS nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry. Thermal and thermo‐oxidative stability of the host polymer were improved by introduction of silver nanoparticles. The glass transition temperature of the prepared Ag/PS nanocomposites was lower in comparison with the neat PS and decreased with the increase of the Ag content due to the very weak interfacial interaction between Ag nanoparticles and polymer matrix. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
This work focuses on the influence of weathering factors—UV radiation, humidity, and temperature on the structure and morphology of poly(vinyl chloride)/montmorillonite (PVC/MMT) nanocomposites obtained by melt blending. It has been observed that organically modified MMT (OMMT) deteriorates the weathering resistance, the thermal behavior, as well as the long‐term stability of PVC. Decomposition of the organic modifier of MMT causes substantial color changes in the PVC nanocomposites as it facilitates the dehydrochlorination process of the polymer. However, the nonmodified MMT provides some stabilization during PVC weathering. The nanocomposites after annealing are characterized by higher glass transition temperature. The increase in heat capacity step (Δcp) during glass transition suggests that in the PVC composites with nonmodified MMT stronger molecular interactions between the polymer and clay platelets occur than in PVC/OMMT nanocomposites. The scanning electron microscopy images on the surface and the cross section show that thermal aging and weathering proceed by different mechanisms. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42090.  相似文献   

14.
Dynamically vulcanized thermoplastic elastomer based on Nitrile butadiene-rubber (NBR)/PVC with functionalized single-walled carbon nanotubes (f-SWNTs) and non-functionalized single-walled carbon nanotubes (SWNTs) were prepared using a brabender internal mixer. Effects of two types of SWNTs (functionalized and non-functionalized) on morphology and mechanical properties of NBR/PVC blends were studied. Results showed that the mechanical properties of NBR/PVC/SWNTs nanocomposites improved with the increasing of SWNTs content and in particular with the increase of f-SWNTs content. Moreover, the enhancement of mechanical properties of NBR/PVC blends reinforced with functionalized SWNT was higher than that of NBR/PVC blends with non-functionalized SWNT. Dispersion of SWNTs and morphology of NBR/PVC/SWNT nanocomposites were determined by scanning electron microscopy and transmission electron microscopy (TEM) techniques. TEM images illustrated that f-SWNTs were dispersed uniformly in NBR/PVC matrix while non-functionalized SWNTs showed much aggregation. Dynamic mechanical thermal analysis of NBR/PVC/SWNTs nanocomposites was also studied. The outcomes indicated that in the case of f-SWNTs, the intensity of tan ?? peak was lower than that in the case of non-functionalized SWNTs. Meanwhile, the intensity of tan ?? peak reduced when the content of f-SWNTs was increased.  相似文献   

15.
Effects of nanoscale dispersed layered double hydroxides (LDHs) on thermal stability of poly(vinyl chloride) (PVC) in thermal and thermooxidative degradation processes are investigated by dynamic and isothermal thermogravimetric analysis (TGA), discoloration test, fourier transform infrared (FTIR), and ultraviolet‐visible (UV‐vis) spectroscopic techniques. During both stages of thermal degradation, the degradation temperatures, including onset degradation temperature and temperature of the maximum degradation rate, increase, and the final residue yield of the PVC/LDH nanocomposites reaches 14.7 wt %, more than double that for neat PVC. The thermooxidative degradation process is more complex. During the first two stages, the presence of nanoscale dispersed LDH particles enhances the thermal stability, whereas in the last stage accelerates the thermal degradation possibly due to the accumulation of heat released. Additionally, the studies of the isothermal thermooxidative degradation process by FTIR and UV‐vis spectra indicate that both polyene backbone formation and some carbonyl groups are simultaneously developed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
王金明 《聚氯乙烯》2011,39(10):18-21
在纳米水滑石(HT)表面共聚适量的丙烯酸六氟丁酯(HfA)和甲基丙烯酸甲酯(MMA),制得HfA/MMA/HT纳米复合材料(以下简称纳米复合材料),并对纳米复合材料的组成进行了优化;还研究了VCM聚合时纳米复合材料的用量对试样热稳定性和抑烟性能的影响。结果表明:①不同HfA、MMA含量的纳米复合材料均能提高试样的冲击强...  相似文献   

17.
The thermal degradation of ternary blends of poly(ε‐caprolactone) (PCL), poly(vinyl acetate) (PVAC), and poly(vinyl chloride) (PVC) was studied using a thermogravimetry analyzer under dynamic heating in flowing nitrogen atmosphere. PCL degraded in a single stage, whereas the PVAC and PVC degraded in two stages during which acid is released in the first stage followed by backbone breakage in the second stage. The addition of PVC to either PCL or PVAC affected the thermal stability of the blend, whereas the addition of PVAC to PCL did not alter the thermal stability of the blend. In ternary blends, the addition of PVC affected the degradation of PVAC but did not influence the degradation of PCL in the range investigated. The increased addition of PCL to the binary blends of PVC/PVAC decreased the extent of thermal instability of PVAC because of the addition of PVC. The addition of even 10% PVAC to the PCL/PVC blend removed the thermal instability of PCL resulting from the addition of PVC and can be attributed to the ease of chlorine or hydrogen chloride capture of PVAC over PCL. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1378–1383, 2004  相似文献   

18.
BACKGROUND: There has been a recent surge of interest in the synthesis and applications of electroactive polymers with incorporated metal nanoparticles. These hybrid systems are expected to display synergistic properties between the conjugated polymers and the metal nanoparticles, making them potential candidates for applications in sensors and electronic devices. RESULTS: Composites of polyaniline derivatives—polyaniline, poly(2,5‐dimethoxyaniline) and poly(aniline‐2,5‐dimethoxyaniline)—and silver nanoparticles were prepared through simultaneous polymerization of aniline derivative and reduction of AgNO3 in the presence of poly(styrene sulfonic acid) (PSS). We used AgNO3 as one of the initial components (1) to form the silver nanoparticles and (2) as an oxidizing agent for initiation of the polymerization reaction. UV‐visible spectra of the synthesized nanocomposites reveal the synchronized formation of silver nanoparticles and polymer matrix. The morphology of the silver nanoparticles and degree of their dispersion in the nanocomposites were characterized by transmission electron microscopy. Thermogravimetric analysis and differential scanning calorimetry results indicate an enhancement of the thermal stability of the nanocomposites compared to the pure polymers. The electrical conductivity of the nanocomposites is in the range 10?4 to 10?2 S cm?1. CONCLUSION: A single‐step process for the synthesis of silver nanoparticle–polyaniline derivative nanocomposites doped with PSS has been demonstrated. The approach in which silver nanoparticles are formed simultaneously during the polymerization process results in a good dispersion of the nanoparticles in the conductive polymer matrix. Copyright © 2008 Society of Chemical Industry  相似文献   

19.
Multicomponent compatibilized blends of polyamide 6 (PA6) and styrene-butadiene-acrylonitrile (ABS) with co-continuous morphology are among commercial alloys with an interesting combination of properties. To further enhance the properties different amounts of nanoclay were incorporated into these blends through a one step melt mixing process. The effect of nanoclay addition on rheological, thermal stability, crystallization and morphological properties of the nanocomposites were investigated and compared with those of the neat blends. The nanoscale dispersion of the clay layers in the blends were confirmed through X-ray diffraction and transmission electron microscopy methods. Rheological investigation indicated an increased viscosity and melt elasticity for the nanocomposite systems. The viscosity of nanocomposites followed a shear thinning flow behavior and decreased with increasing shear rates. The changes in the rheological properties were accompanied by refinement of the co-continuous morphology. For thermal degradation under N2 atmosphere, the onset and maximum of degradation temperatures for the nanocomposites were as high as the neat blends, while significant improvement in thermal stability (about 60 °C by 3 wt% clay addition) was observed in the air environment. In addition agglomerated clay particles did not significantly affect thermal stability of the polymer matrix. Non-isothermal crystallization results indicated that the clay layers had a retarding effect on the crystal growth rate and facilitated the formation of α crystalline form. In addition no nucleation effect was observed during the crystallization process due to incorporation of nanoclay into the blends.  相似文献   

20.
NBR/PVC/OMMT纳米复合材料的结构与性能研究   总被引:1,自引:0,他引:1  
采用乳液共沉法和直接混炼法制备NBR/PVC/有机蒙脱土(OMMT)纳米复合材料,研究纳米复合材料的硫化特性、微观结构、动态力学性能和热稳定性.结果表明,OMMT能够显著促进NBR的硫化反应,使NBR/PVC/OMMT纳米复合材料的焦烧时间和正硫化时间明显缩短;乳液共沉法和直接混炼法NBR/PVC/OMMT纳米复合材料是插层型纳米复合材料,乳液共沉法NBR/PVC/OMMT纳米复合材料中的OMMT分散更为均匀,其储能模量、玻璃化温度和热分解温度均高于NBR/PVC共混物和直接混炼法NBR/PVC/OMMT纳米复合材料,具有较好的动态力学性能和热稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号