首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, phenolated wood resin was used an adsorbent for the removal of Cr(III), Ni(II), Zn(II), Co(II) ions by adsorption from aqueous solution. The adsorption of metal ions from solution was carried at different contact times, concentrations and pHs at room temperature (25°C). For individual metal ion, the amount of metal ions adsorbed per unit weight of phenolated wood resin at equilibrium time increased with increasing concentration and pH. Also, when the amounts of metal ions adsorbed are compared to each other, it was seen that this increase was order of Cr(III) > Ni(II) > Zn(II) > Co(II). This increase was order of Cr(III) > Ni(II) > Co(II) > Zn(II) for commercial phenol–formaldehyde resin. Kinetic studies showed that the adsorption process obeyed the intraparticle diffusion model. It was also determined that adsorption isotherm followed Langmuir and Freundlich models. Adsorption isotherm obtained for commercial phenol–formaldehyde resin was consistent with Freundlich model well. Adsorption capacities from Langmuir isotherm for commercial phenol–formaldehyde resin were higher than those of phenolated wood resin, in the case of individual metal ions. Original adsorption isotherm demonstrated the monolayer coverage of the surface of phenolated wood resin. Adsorption kinetic followed the intraparticle diffusion model. The positive values of ΔG° determined using the equilibrium constants showed that the adsorption was not of spontaneous nature. It was seen that values of distribution coefficient (KD) decreasing with metal ion concentration in solution at equilibrium (Ce) indicated that the occupation of active surface sites of adsorbent increased with metal ions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2838–2846, 2006  相似文献   

2.
The adsorption behavior of poly(ethylene terephthalate) (PET) fibers towards copper(II), cobalt(II), and iron(III) ions in aqueous solutions was studied by a batch equilibriation technique. Influence of treatment time, temperature, pH of the solution, and metal ion concentration on the adsorption were investigated. Adsorption values for metal ion intake followed the following order: Co(II) > Cu(II) > Fe(III). One hour of adsorption time was found sufficient to reach adsorption equilibrium for all the ions. The rate of adsorption was found to decrease with the increase in the temperature. Langmuir adsorption isoterm curves were found to be significant for all the ions studied. The heat of adsorption values were calculated as −5, −2.8, and −3.6 kcal/mol for Cu(II), Co(II), and Fe(III) ions, respectively. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1935–1939, 1998  相似文献   

3.
《分离科学与技术》2012,47(3):579-590
Abstract

Adsorption gel was prepared from waste recycled paper by immobilizing iminodiacetic acid (IDA) functional group by chemical modification. The gel exhibited good adsorption behavior for a number of metal ions viz. Cu(II), Pb(II), Fe(III), Ni(II), Cd(II), and Co(II) at acidic pH. The order of selectivity was found to be as follows: Cu(II)>Pb(II)>Fe(III)>Ni(II)~Cd(II)~Co(II). From the adsorption isotherms, the maximum adsorption capacity of the gel for both Cu(II) and Pb(II) was found to be 0.47 mol/kg whereas that for Cd(II) was 0.24 mol/kg. A continuous flow experiment for Cd(II) showed that the gel can be useful for pre‐concentration and complete removal of Cd(II) from aqueous solution.  相似文献   

4.
Thiourea‐formaldehyde (TUF), a well‐known chelating resin, has been synthesized and it was used in the adsorption, selective separation, and concentration of Pd(II) ions from Fe(III), Co(II) Ni(II), and Cu(II) base metal ions. The composition of the synthesized resin was determined by elemental analysis. The effect of initial acidity/pH and the adsorption capacity for Pd(II) ions were studied by batch technique. The adsorption and separation of Pd(II) were then examined by column technique. FTIR spectra and SEM/EDS analysis were also recorded before and after the adsorption of Pd(II). The optimum pH was found to be 4 for the adsorption. The adsorption data fitted well to the Langmuir isotherm. The maximum adsorption capacity of the TUF resin for Pd(II) ions was found to be 31.85 mg g−1 (0.300 mmol g−1). Chelating mechanism was effective in the adsorption. Pd(II) ions could be separated efficiently from Fe(III), Cu(II), Ni(II), and Co(II) ions using TUF resin. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Two samples of macroporous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate), poly(GMA-co-EGDMA), with different porosity parameters were synthesized by suspension copolymerization and modified by ring-opening reaction of the pendant epoxy groups with ethylene diamine (EDA). The samples were characterized by mercury porosimetry, FT-IR spectroscopy and elemental analysis. The sorption rate of the modified copolymer, poly(GMA-co-EGDMA)-en for Cu(II) ions determined under non-competitive conditions was relatively rapid, i.e. the maximum capacity was reached within 30 min. Batch sorption capacities for Cu(II), Fe(II), Mn(II), Cd(II), Zn(II), Pb(II), Cr(III) and Pt(IV) ions were determined under non-competitive conditions in the pH range 1.25–5.5 at room temperature. The maximum sorption capacities of poly(GMA-co-EGDMA)-en under non-competitive conditions were 1.30 mmol/g for Pt(IV) at pH 5.5, 1.10 mmol/g for Cu(II) at pH 5.5, 1.06 mmol/g for Pb(II) at pH 1.25 and 0.67 mmol/g for Cd(II) ions at pH 5.5. The selectivity of poly(GMA-co-EGDMA)-en towards Cu(II), Co(II), Ni(II), Pb(II) and Pt(IV) ions was investigated under competitive conditions. Poly(GMA-co-EGDMA)-en showed high selectivity for Pt(IV) over Cu(II), Co(II), Ni(II) and Pb(II) ions at pH 2.1. At pH 5.5, the metal sorption capacities of poly(GMA-co-EGDMA)-en decreased in the order: Cu(II) > Co(II) > Pt(IV)  Ni(II) > Pb(II). Regeneration of the Cu(II), Ni(II) and Pb(II) loaded poly(GMA-co-EGDMA)-en with 2 M H2SO4 showed that the polymer can be reused in several sorption/desorption cycles.  相似文献   

6.
《分离科学与技术》2012,47(6):1245-1254
Abstract

In this study, Poly(N,N dimethyl‐amino ethylmethacrylate) (Poly(DMAEMA)) hydrogels with varying compositions were prepared in the form of rods by irradiating ternary mixtures of N,N‐dimethylamino ethylmethacrylate/ethyleneglycoldimethacrylate/water with gamma rays at ambient temperature. Swelling studies of poly (DMAEMA) hydrogels were performed at different pH values and maximum swelling values reached at pH 2. The adsorption characteristics of Pb(II), Cd(II), Ni(II), Zn(II), Cu(II), and Co(II) ions to poly(N,N dimethylamino ethylmethacrylate) hydrogels were investigated by a batch process. The order of affinity based on amount of metal ion uptake was found as follows: Cu(II)>Zn(II)?Co(II)>Pb(II) >> Ni(II)>Cd(II). In the adsorption studies of Cu(II), Zn(II), Co(II), Pb(II), Ni(II), and Cd(II) ions the Langmuir type adsorption isotherms were observed for all gel systems.  相似文献   

7.
《分离科学与技术》2012,47(8):1313-1320
The removal characteristics of Cd(II), Cu(II), Pb(II), and Zn(II) from model aqueous solutions by 5 natural Mongolian zeolites were investigated. The adsorption of metals on zeolites reached a plateau value within 6 h. The adsorption kinetic data were fitted with adsorption kinetic models. The equilibrium adsorption capacity of the zeolites was measured and fitted using Langmuir and Freundlich isotherm models. The order of adsorption capacity of zeolite was Pb(II) > Zn(II) > Cu(II) > Cd(II). The maximum adsorption capacity of natural zeolite depends on its cation exchange capacity and pH. The leaching properties of metals were simulated using four leaching solutions. The results show that natural zeolite can be used as an adsorbent for metal ions from aqueous solutions or as a stabilizer for metal-contaminated soils.  相似文献   

8.
《分离科学与技术》2012,47(3):591-609
Abstract

The aniline moiety was covalently grafted onto silica gel surface. The modified silica gel with aniline groups (SiAn) was used for removal of Cu(II), Fe(III), and Cr(III) ions from aqueous solution and industrial effluents using a batch adsorption procedure. The maximum adsorption of the transition metal ions took place at pH 4.5. The adsorption kinetics for all the adsorbates fitted better the pseudo second‐order kinetic model, obtaining the following adsorption rate constants (k2): 1.233 · 10?2, 1.902 · 10?2, and 8.320 · 10?3 g · mg?1 min?1 for Cr(III), Cu(II), and Fe(III), respectively. The adsorption of these transition metal ions were fitted to Langmuir, Freundlich, Sips, and Redlich‐Peterson isotherm models; however, the best isotherm model fitting which presented a lower difference of the q (amount adsorbed per gram of adsorbent) calculated by the model from the experimentally measured, was achieved by using the Sips model for all adsorbates chosen. The SiAn adsorbent was also employed for the removal of the transition metal ions Cr(III) (95%), Cu(II) (95%), and Fe(III) (94%) from industrial effluents, using the batch adsorption procedure.  相似文献   

9.
The formation of ternary complexes of the type MAB (where M = Cu(II), Ni(II), Zn(II) or Cd(II); A = nitrilotriacetic acid and B = glycine, α-alanine or dl-aspartic acid) has been shown by potentiometric studies. The nature of titration curves indicates that the secondary ligand B is added stepwise to the initially formed metal nitrilotriacetates. The formation constants (log KMAB) and the free energies of formation (ΔF°) of the mixed complexes have been calculated at 25 ± 1 °C and m̈ = 0.10 (KNO3) at different pH values. The formation constants of the resulting 1:1:1 ternary complexes follow the order Cu(II) > Ni(II) > Zn(II) > Cd(II).  相似文献   

10.
An activated carbon sorbent containing thioetheric sites (ACTS) was prepared by modification of the activated carbon with 2,2′-thiodiethanol. The specific surface area, pore volume, concentration of oxygen-containing groups and sulfur content of the sorbent were determined. The sorption behavior towards ions of some precious metals—Au(III), Pt(IV), Pd(II) and heavy metals—Ni(II), Zn(II), Fe(III), Cu(II), Pb(II), Cd(II) and Co(II) was studied. Selectivity towards gold, palladium and platinum in the pH range 1–9 was observed. The capacity for gold was 80 mg g−1. The sorption of Au(III) at pH 1 is not affected by milligram amounts of Ni(II), Zn(II), Fe(III), Cu(II), Pb(II), Cd(II) and Co(II). The sorbed gold species is Au(0).  相似文献   

11.
The structure of the bromate-oxidized wheat starch (OS) contains partly opened glucose units with carbonyl and carboxyl groups at C2-, C3- or C6-positions. OS with a variable degree of oxidation (DO) was studied in alkaline conditions as a water-soluble complexing agent for Fe(III), Cu(II), Ni(II) and Zn(II) ions, which are common in various wastewaters. Complexation was studied by inductively coupled plasma-optical emission spectrometry (ICP–OES) in a single metal ion or multi-metal ion solutions. The DO affected the efficiency of the complexation with metal ions. OS with the high DO (carboxyl and carbonyl DO of 0.72 and 0.23, respectively) complexed and held Fe(III) or Zn(II) ions in a soluble form effectively in 0.5 mM single ion alkaline solution with the molar ratio of 0.65:1 of oxidized starch-to-metal ion (OS-to-M). The OS-to-M molar ratio of 1.3:1 was required to form a soluble complex with Cu(II) or Ni(II) ions. These complexes were thermally stable at the temperature range of 20–60 °C. OS with the low DO (carboxyl and carbonyl DO 0.47 and 0.17, respectively) complexed Zn(II) ions highly, Cu(II) and Ni(II) ions poorly and Fe(III) ions only partly. In the multi-metal ion solution of OS the solubility of these metal ions improved with the increasing DO of starch, which followed the same tendency as was observed in the single metal ion systems. The increased molar ratio of OS-to-M improved the complexation and solubility of the metal ions in all multi-metal ion series. As the soluble multi-metal ion complexes were reanalyzed after 7 days, all solutions had kept the high complexation and solubility of metal ions (ca. 90%). Complexation by OS did not show a selective binding of the ions in the multi-metal ion solution. It was concluded that the flexible, opened ring structure units of OS prevented the selective binding to metal ions but made the complexes highly stable. Titrimetric studies of OS–Fe(III) complexation showed that each anhydroglucose unit of OS had more than one coordination site and as the content of OS increased, the free sites coordinated to Fe(III) ions and formed cross-linked starch structures.  相似文献   

12.
Results are reported for the molar conductivities at 25°C of N,N—dimethylacetamide (DMA) solutions of Bu4NBF4 and Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) tetrafluoroborates. The limiting molar conductivities of [M(DMA)6]2+ (M  MN, Co, Ni, Cu, Zn) and BF?4, as well as association constants for Co(BF4)2 in DMA solutions have been calculated. The slight differences between conductometric curves of different metal ions are discussed.  相似文献   

13.
The removal of Fe(III), Cu(II), and Cd(II) ions from aqueous solutions was investigated with a crossflow filtration technique. Alginic acid (AA)/cellulose composite membranes were used for retention. In the filtration of Fe(III) solutions, the effects of the crossflow velocity, applied pressure, AA content of the membranes, and pH on the retention percentage and the permeate flux were examined. The maximum retention percentage was found to be 89% for a 1 × 10?4M Fe(III) solution at the flow velocity of 100 mL/min and the pressure of 60 kPa with 0.50% (w/v) AA/cellulose composite membranes at pH 3. Aqueous solutions of Cu(II) and Cd(II) were filtered at the flow velocity of 100 mL/min and pressure of 10 kPa. The effects of the AA content of the membranes and pH of the waste medium on the retention percentage and the permeate flux were determined. For 1 × 10?4M Cu(II) and Cd(II) solutions, the maximum retention percentages were found to be 94 and 75%, respectively, at pH 7 with 0.50% (w/v) AA/cellulose composite membranes. When metal‐ion mixtures were used, the retention percentages of Fe(III), Cu(II), and Cd(II) were found to be 89, 48, and 10%, respectively, at pH 3 with 0.50% (w/v) AA/cellulose composite membranes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
ABSTRACT

Silica gel with covalently immobilized imidazolium group was obtained by click reaction and characterized by elemental analysis, thermogravimetry, as well as by IR and solid-state 13C NMR spectroscopy. The total exchange capacity of the obtained material was calculated to be 0.26 ± 0.02 mM/g. The nature of the salt background of KCl and HCl was shown to have effect on the distribution coefficients of Cu(II), Ni(II), Co(II), Cd(II), and Pd(II) on modified silica gel. In the case of Pd(II) possessing a high distribution coefficient under selected steady-state ion-exchange conditions (0.1 M HCl), dynamic breakthrough curves were obtained for different levels of initial analyte concentration. The addition of equimolar amounts of Fe(III), Al(III), Cu(II), Ni(II), Co(II), and Zn(II) and a change in the total salinity level up to 35 g/L were shown to have no effect on the distribution coefficient of Pd(II) under dynamic ion exchange conditions.  相似文献   

15.
In this article, the adsorption properties of poly(acrylaminophosphonic-carboxyl-hydrazide) chelating fibers for Cu(II), Cd(II), Co(II), Mn(II), Pb(II), Zn(II), Ni(II), and Cr(III) are investigated by a batch technique. Based on the research results of binding capacity, adsorption isotherm, effect of pH value on sorption, and adsorption kinetics experiments, it is shown that the poly(acrylaminophosphonic-carboxyl-hydrazide) chelating fibers have higher binding capacities and good adsorption kinetic properties for heavy metal ions. The sorption of the metal ions on the chelating fibers is strongly dependent on the equilibrium pH value of the solution. The adsorption isotherms of Cu(II) and Cd(II) on the chelating fiber exhibit a Langmuir-type equation. The adsorbed Cu(II), Cd(II), Zn(II), and Pb(II) could be eluted by diluted nitric acid. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 7–14, 1998  相似文献   

16.
Catalase‐like activity of the metal complexes of various crosslinked polystyrene‐supported Schiff bases were carried out and correlated with the nature and degree of crosslinking in the polymer support. Polystyrenes with 2–20 mol % ethyleneglycol dimethacrylate (EGDMA), 1,4‐butanediol dimethacrylate (BDDMA) and 1,6‐hexanediol diacrylate (HDODA) were used as polymer supports. functions of diethylenetriamine and salicylaldehyde were incorporated to the chloromethylpolystyrene by polymer analogous reactions and complexed with Fe(II), Fe(III), Co(II), Ni(II), and Cu(II) ions. The metal uptake decreased in the order: Cu(II) > Co(II) > Ni(II) > Fe(III) > Fe(II), and extent of metal uptake by the various crosslinked system varied with the nature and degree of the crosslinking agent. The polymeric ligands and the metal complexes were characterized by various analytical techniques. The catalytic activities of these metal complexes were investigated towards the decomposition reaction of hydrogen peroxide. Generally among the various metal complexes, the catalytic activities decreased in the order: Co(II) > Cu(II) > Ni(II) > Fe(III) ? Fe(II). With increasing rigidity of the crosslinking agent their catalytic activity also decreased. Of the various crosslinked systems, the catalytic activity decreased in the order: HDODA‐ > BDDMA‐ > EGDMA‐crosslinked system. Also, the catalytic activity is higher for low crosslinked systems and decreased further with increasing degree of crosslinking. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1271–1278, 2004  相似文献   

17.
An ICP‐AES method using a new spherical macroporous epoxy–polyamide chelating resin to enrich and separate trace Ga(III), In(III), Bi(III), V(V), Cr(III), and Ti(IV) ions from solution samples is established. The results show that the analyzed ions can be enriched quantitatively by 0.1 g of the resin at pH 4, with recoveries > 98%. The ions can be desorbed quantitatively with 10 mL of 2M HCl from the resin column with recoveries > 96%, and 100–1000‐fold excesses of Ca(II), Mg(II), Fe(III), Cu(II), Zn(II), Al(III), Ni(II), and Mn(II) cause little interference in the determination of these ions by ICP‐AES. The chelating resin is reused for ten times; the recoveries of these ions are still over 95%. The relative standard deviations for enrichment and determination of 100 ng ml?1 Ga(III), In(III), and Bi(III), 10 ng ml?1 V(V), Cr(III), and Ti(IV) are in the range 0.6–2.3%. The concentration of each ion found in the real wastewater sample and alloy sample is in good agreement with the values provided by the plant. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2330–2334, 2005  相似文献   

18.
The metal‐ion complexation behavior and catalytic activity of 4 mol % N,N′‐methylene bisacrylamide crosslinked poly(acrylic acid) were investigated. The polymeric ligand was prepared by solution polymerization. The metal‐ion complexation was studied with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal uptake followed the order: Cu(II) > Cr(III) > Mn(II) > Co(II) > Fe(III) > Zn(II) > Ni(II). The polymeric ligand and the metal complexes were characterized by various spectral methods. The catalytic activity of the metal complexes were investigated toward the hydrolysis of p‐nitrophenyl acetate (NPA). The Co(II) complexes exhibited high catalytic activity. The kinetics of catalysis was first order. The hydrolysis was controlled by pH, time, amount of catalyst, and temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 272–279, 2004  相似文献   

19.
Totally six dinuclear complexes of Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) of calix[4]arene derivatized with two pendants possessing terminal –COOH functions at two of its alternate phenolic –OH groups were synthesized for the first time and were well characterized.  相似文献   

20.
《分离科学与技术》2012,47(15):3429-3446
Abstract

2,3‐Dihydroxypyridine (DHP) was loaded onto Amberlite XAD‐16 via azo linker and the resulting resin AXAD‐16‐DHP explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III), and Co(II) in the pH range 4.0–6.5. The sorption capacity was found in the range 120–512 µmol g?1 and the preconcentration factor from 200 to 300. Tolerance limits for foreign species are reported. The kinetics of sorption is fast, as t1/2 is generally ≤2 min. The chelating resin can be reused for fifty cycles of sorption‐desorption without any significant change (≤2.0%) in its sorption capacity. The limit of detection values (blank + 3s) are 2.90, 3.80, 5.17, 7.02, 1.91, 1.63, 4.59, and 5.02 µg L?1 for Zn, Mn, Ni, Pb, Cd, Cu, Fe, and Co respectively. The corresponding limit of quantification (blank + 10 s) values are 5.30, 6.20, 8.38, 9.54, 4.22, 4.17, 8.62, and 9.86 µg L?1, respectively. The enrichment on AXAD‐16‐DHP coupled with monitoring by flame atomic absorption spectrometry (FAAS) is used to determine these metal ions in river and synthetic water samples, Co in vitamin tablets, and Zn in milk samples. AXAD‐16‐DHP has been found to perform better than DHP loaded cellulose and Amberlite XAD‐2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号