首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between sealer penetration into dentinal tubules and the bond strength of two new calcium silicate-based and epoxy resin-based endodontic sealers was evaluated. Thirty recently extracted human maxillary incisors were instrumented and divided into three groups according to the sealer used: (1) AH Plus; (2) iRoot SP; and (3) MTA Fillapex. Sealer penetration into dentinal tubules was measured using CLSM. Then, a universal testing machine was used to compare the push-out bond strengths of the sealers to the root canal dentin. AH Plus and MTA Fillapex exhibited significantly higher sealer penetration than iRoot SP did (p > .05). The push-out bond strengths of AH Plus and iRoot SP were higher than that of MTA Fillapex. We concluded that greater penetration of the sealer into the dentinal tubules was not associated with higher bond strength among the three sealers tested.  相似文献   

2.
The aim of this study was to investigate the effect of adding powdered dentin to primer or adhesive in a self-etch system on the shear bond strength of three resin-based sealers. Seventy-two premolars were sectioned buccolingually, and 144 root halves were divided into three groups according to the sealer used: epoxy resin-based sealer (AH Plus), methacrylate resin-based (RealSeal, Hybrid Root SEAL) n = 48. The surfaces were irrigated with 5% NaOCl, 17% EDTA, distilled water for 5 min. Four subgroups were created (n = 12): control group; Clearfil Liner Bond 2 V treated group; powdered dentin added to the primer of Clearfil Liner Bond 2 V (40 wt.%); and powdered dentin added to the adhesive of Clearfil Liner Bond 2 V (20 wt.%). Dentin powder was prepared. Three mm high buildups with a constant surface area of 3.45 mm2 were created using the sealers and allowed to set (37 ºC, 100% humid, 72 h). The samples were tested to failure for shear bond strength (1 mm/min). The data were calculated (MPa) and analyzed using two-way ANOVA, one-way ANOVA, and Tukey HSD tests. Adhesive use decreased the bonding performance of AH Plus (p = 0.00). Mean bond strength of the other sealers was found similar to control. Primer or adhesive resin with powdered dentin did not increase the adhesive performance of the self-etch system used. The shear bond strength of RealSeal was significantly increased when powdered dentin was added to primer or adhesive (p = 0.00). The effect of adding powdered-dentine to primer or adhesive in a self-etch system on the shear bond strength was sealer-dependent .  相似文献   

3.
The rheological properties of some newly developed polymer compositions have been investigated with and without crosslinking. These polymer compositions were developed as a water shutoff and sand consolidation treatment agents for producing oil and gas wells. The effects of several variables on the rheology of the compositions were evaluated over a wide range of temperatures (25–110°C), shear rates (0–500 s?1), brine percentages (0–15%), crosslinker types and concentrations (0–3%), and polymer concentrations (6–50%). It was found that increasing the shear rate from 0 s?1 to 100 s?1 caused shear thinning and reduction of the viscosity of the dilute solutions (6–13%) from 25 cP to ~ 3 cP at 80°C. In contrast, for the concentrated solutions (20–50%), the viscosity dropped slightly in the shear rate range 0–10 s?1, and subsequently decreased more slowly up to shear rates of 500 s?1. The viscosities of all polymer solutions dropped by a factor of 2 as the brine concentration increased from 0% to 15%. Finally, aging time coupled with shear rates and higher percentages of crosslinkers accelerate the buildup of viscosity and gelation time of the polymer compositions. For concentrated solutions, shear rates ranging within 0–200 s?1 accelerated gelation time from 9.75 h to 2–3 h, when they were sheared at 80°C. The polymeric solutions exhibited Newtonian, shear‐thinning (pseudo‐plastic), and shear‐thickening (dilatant) behavior, depending on the concentration, shear rate, and other constituents. In most cases, the rheological behavior could be described by the power law. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
The aim of the study was to analyze the chemical–physical properties and bioactivity (apatite-forming ability) of three recently introduced premixed bioceramic root canal sealers containing varied amounts of different calcium silicates (CaSi): a dicalcium and tricalcium silicate (1–10% and 20–30%)-containing sealer with zirconium dioxide and tricalcium aluminate (CERASEAL); a tricalcium silicate (5–15%)-containing sealer with zirconium dioxide, dimethyl sulfoxide and lithium carbonate (AH PLUS BIOCERAMIC) and a dicalcium and tricalcium silicate (10% and 25%)-containing sealer with calcium aluminate, tricalcium aluminate and tantalite (NEOSEALER FLO). An epoxy resin-based sealer (AH PLUS) was used as control. The initial and final setting times, radiopacity, flowability, film thickness, open pore volume, water absorption, solubility, calcium release and alkalizing activity were tested. The nucleation of calcium phosphates and/or apatite after 28 days aging in Hanks balanced salt solution (HBSS) was evaluated by ESEM-EDX, vibrational IR and micro-Raman spectroscopy. The analyses showed for NeoSealer Flo and AH Plus the longest final setting times (1344 ± 60 and 1300 ± 60 min, respectively), while shorter times for AH Plus Bioceramic and Ceraseal (660 ± 60 and 720 ± 60 min, respectively). Radiopacity, flowability and film thickness complied with ISO 6876/12 for all tested materials. A significantly higher open pore volume was observed for NeoSealer Flo, AH Plus Bioceramic and Ceraseal when compared to AH Plus (p < 0.05), significantly higher values were observed for NeoSealer Flo and AH Plus Bioceramic (p < 0.05). Ceraseal and AH Plus revealed the lowest solubility. All CaSi-containing sealers released calcium and alkalized the soaking water. After 28 days immersion in HBSS, ESEM-EDX analyses revealed the formation of a mineral layer that covered the surface of all bioceramic sealers, with a lower detection of radiopacifiers (Zirconium for Ceraseal and AH Plus Bioceramic, Tantalum for NeoSealer Flo) and an increase in calcium, phosphorous and carbon. The calcium phosphate (CaP) layer was more evident on NeoSealer Flo and AH Plus Bioceramic. IR and micro-Raman revealed the formation of calcium carbonate on the surface of all set materials. A thin layer of a CaP phase was detected only on AH Plus Bioceramic and NeoSealer Flo. Ceraseal did not show CaP deposit despite its highest calcium release among all the tested CaSi-containing sealers. In conclusion, CaSi-containing sealers met the required chemical and physical standards and released biologically relevant ions. Slight/limited apatite nucleation was observed in relation to the high carbonation processes.  相似文献   

5.
The elongational rheology of solutions of cellulose in the ionic liquid solvent 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl) was measured at 80, 90, and 100°C; 8, 10, and 12 wt% cellulose; Hencky strains 5, 6, 7; and strain rates from 1 to 100 s?1. Master curves were generated by shifting the elongational viscosity curves with respect to temperature and Hencky strain. Also, general master curves were generated by simultaneously shifting with respect to both temperatures and Hencky strain. From the Arrhenius plots of the temperature shift factors, the activation energy for elongational flow was determined. The elongational rheology of these solutions was elongational strain rate thinning similar to that of their shear behavior and polymer melts and they were also strain hardening. Both effects and the viscosity increased with cellulose concentration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
The rheology of a liquid crystalline copolyester of hydroxybenzoic acid, hydroquinone, and sebacic acid (HBA/HQ/SA copolyester) was studied on both a rotational and a capillary rheometer. DSC studies show that the copolyester has a crystalmesophasic and a broad mesophasic-isotropic transition at 170°C and 220°C. Optical texture observations show the mesophase is characterized by line defect textures, which are characteristic of a nematic structure. At 220°C, both isotropic and nematic phases coexist with the latter being the major. As temperature reaches 250°C, a clear dominance of isotropic phase is observed. At this temperature, the nematic phase of irregular shapes randomly disperses within the isotropic matrix. Subsequent rheological studies were thus conducted in crystal/nematic biphase, single nematic phase, nematic/isotropic biphase, and the near single isotropic phase. Dynamic strain sweep measurements show that a linear viscoelastic region exists at all temperatures tested. The maximum strain amplitude for the linear viscoelastic region is found to be highly structure dependent; it is > 100% in the nematic phase, ∼20% in the biphases, and only about 5% in the isotropic phase. The concurrence of curves obtained at different temperatures in a Cole-Cole plot of G′ vs. G″ indicates similar structures in the nematic phase and biphases. Measurements of steady shear viscosity using a rotational rheometer and a roundhole capillary rheometer show that in the nematic phase the copolyester behaves as a shear thinning fluid for a wide shear rate range of 1 ∼ 10,000 s−1, in which the power law index is about 0.6 ∼ 0.8, and the viscosity is < 10 Pa.s at shear rates >1 s−1.  相似文献   

7.
The shear viscosity of polymethylmethacrylate (PMMA) melt is particularly investigated by using a twin‐bore capillary rheometer at four temperatures of 210, 225, 240, and 255°C with different capillary dies. Experimental results show that the geometrical dependence of shear viscosity is significantly dependent on melt pressure as well as melt temperature. The measured shear viscosity increases with the decrease of die diameter at lower temperatures (210 and 225°C) but decreases with the decrease of die diameter at higher temperatures (240 and 255°C). Based on the deviation of shear viscosity curves and Mooney method, negative slip velocity is obtained at low temperatures and positive slip velocity is obtained at high temperatures, respectively. Geometrical dependence and pressure sensitivity of shear viscosity as well as temperature effect are emphasized for this viscosity deviation. Moreover, shear viscosity curve at 210°C deviates from the power law model above a critical pressure and then becomes less thinning. Mechanisms of the negative slip velocity at low temperatures are explored through Doolittle viscosity model and Barus equation, in which the pressure drop is used to obtain the pressure coefficient by curve fitting. Dependence of pressure coefficient on melt temperature suggests that the pressure sensitivity of shear viscosity is significantly affected by temperature. Geometrical dependence of shear viscosity can be somewhat weakened by increasing melt temperature. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3384–3394, 2013  相似文献   

8.
Objectives: This study evaluated the effect of different root canal sealers on the push-out bond strength of tooth-colored posts to root dentin. Material and methods: Eighty human mandibular premolar teeth with single roots were decoronated and randomly divided into two groups according to post material: G1–G5: Cytec blanco; G6–G10: Cosmopost. In each group, the specimens were further subgrouped according to the filling material plus sealer (n = 8): G1, G6: Gutta-percha + AH Plus; G2, G7: Resilon + Epiphany SE; G3, G8: Gutta-percha + Sealite; G4, G9: Gutta-percha + iRoot SP; and G5, G10: control (unobturated). Cytec blanco and Cosmopost of 1.4 mm diameter were adhesively luted to samples using Variolink II. Push-out test was performed in a universal testing machine, and failure modes were examined under stereomicroscope. Data were analyzed with the two-way ANOVA and post hoc Tukey’s tests. Statistical significance was set to 0.05. Results: Roots obturated with AH Plus (3.48 ± 1.41 MPa), Sealite (3.47 ± 0.65 MPa), and Resilon (3.36 ± 1.23 MPa) had the lowest bond strength (p < 0.005). iRoot SP and control group samples showed the highest bond strength values (7.38 ± 0.89 MPa and 6.43 ± 1.16 MPa, respectively) (p < 0.05). Significant differences were observed among tooth-colored posts and sealers (p < 0.05). Adhesive failures were predominant in all groups (48%). Conclusions: When the resin cement Variolink II was used, the types of root canal filling materials and sealers could affect the retentions of the fiber/zirconium posts; the fiber post revealed the higher bond values than the zirconium post; and the calcium silicate-based sealer (iRoot SP) revealed the highest bond strengths.  相似文献   

9.
Dynamic rheological data for paraffin wax and its organoclay nanocomposites are reported. Dynamic mechanical analysis of paraffin wax for temperatures ranging from ?40 to 55°C showed a decrease of several orders of magnitude in the dynamic moduli and a significant shift toward viscous behavior, which resulted from the occurrence of two solid–solid phase transitions. In both the crystalline and mesophase regions, the dispersion of organoclay platelets in paraffin wax via ultrasonication increased the storage modulus, whereas the effect on the loss modulus was temperature‐dependent. The melt rheology data of the wax–clay nanocomposites at 70°C showed that the complex viscosities increased monotonically with clay addition and demonstrated shear‐thinning behavior for frequencies between 0.1 and 100 rad/s. The complex viscosity versus angular frequency data were well fit by a power‐law function for which the shear‐thinning exponent provides a gauge for the extent of clay exfoliation. The nanocomposites exhibited low‐frequency solid behavior, which indicated good exfoliation of the organoclay in the wax matrix. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The effect of adding poly(vinyl chloride) (PVC) and coke filler on the rheological behavior and thermal properties of a coal tar pitch was investigated with a view to developing an appropriate viscoelastic binder for the injection molding of graphite components. Dynamic mechanical analysis revealed that the pitch formed compatible blends with PVC featuring a single glass transition temperature (Tg) intermediate to the two parent Tg’s. Adding PVC to the pitch increased melt viscosity substantially and resulted in strong shear thinning behavior at high PVC addition levels. Adding coke powder as filler increased the melt viscosity even further and enhanced shear thinning trends. Pyrolysis conducted in a nitrogen atmosphere revealed interactions between the PVC and pitch degradation pathways: the blends underwent significant thermal decomposition at lower temperatures but showed enhanced carbon yields at high temperatures. Pyrolytic carbon yield at 1000 °C was further improved by a heat treatment (temperature scanned to 400 °C) in air or oxygen. However, carbon yield decreased with addition of PVC. In addition, the degree of ordering attained following a 1 h heat treatment at 2400 °C also decreased with increasing PVC content.  相似文献   

11.
Izod impact strength of PP impact copolymer/Styrene-Butadiene-Styrene blends were evaluated at varied sub-zero temperatures and demonstrated 12 times enhancement in impact strength of 40% SBS containing blend over pure PP-cp at ?40°C. SBS content played a vital role in morphology development as it changes from droplet morphology to elongated ellipsoid to a seemingly networked structure leading towards different fracture mechanisms. Rheological properties of blends evaluated on capillary rheometer showed pseudoplastic behavior at varied shear rates (50 ? 104 s?1) at 220°C and good agreement between experimental shear viscosity and theoretical values as per log additivity principle at high shear rates.  相似文献   

12.
《应用陶瓷进展》2013,112(4):189-195
Abstract

Abstract

Single phase PLZT powder was fabricated using the mixed oxide approach, with a composition (6/60/40) lying on the rhombohedral-tetragonal (morphotropic) phase boundary. Aqueous suspensions showed an IEP of pH?9·7 in the absence of a polyelectrolyte surfactant. Inductively coupled plasma optical emission spectrometry analysis demonstrated considerable leaching of Pb2+ and La3+ ions under acidic conditions. The addition of an ammonium salt of poly(methacrylate), or PMA-NH4, decreased the IEP to pH?5-6. Suspensions were readily stabilised at basic pH using low PMA-NH4 concentration (<0·1?wt-% of solids). Concentrated suspensions exhibited shear thinning behaviour under low shear rates, with a transition to shear thickening at modest rates (i.e. 100?s?1). Excessive shear thickening imposed a maximum solids loading of 46?vol.-% on concentrated suspensions, which related to the somewhat ‘flake-like’ particle morphology. Slip casting resulted in green and sintered (1250°C for 30?min) densities of 56±1% and 98·3±0·6% of theoretical, respectively.  相似文献   

13.
The rheological properties of yellow grease and poultry fat and their liquid density at 25.0°C were experimentally determined. Dynamic viscosities of these industrial recycled fat products were measured for shear rates of 0.65 to 32.34 s−1 at temperatures of 15.6 to 71.1°C. The resulting measurements were fitted to a power law model to obtain values for the consistency coefficient and the flow behavior index. The data was also fit to Andrade's equation to relate viscosity to temperature. These results indicated pseudoplastic flow behavior for both products, with increasing non-Newtonian behavior at higher temperatures and shear rates.  相似文献   

14.
Anaerobic sludges taken from 16 different biogas plants were analyzed with respect to their rheological characteristics. All sludges showed temperature‐dependent shear‐thinning behavior with viscosities from 900 – 6000 mPa s at 20 °C. Nevertheless, the liquid fraction of the anaerobic sludges also revealed temperature‐dependent, shear‐thinning behavior with viscosities well above water viscosity (2 – 40 mPa s at 20 °C). The rheological behavior of the liquid phase could be linked to organic fractions, i.e., proteins and polysaccharides. Shear‐thinning and temperature‐dependent behavior was modeled by the power‐law equation and the Arrhenius law, respectively.  相似文献   

15.
The equibiaxial elongational viscosity of polystyrene was determined using a lubricated squeezing technique. Constant strain rates up to Hencky strains of 4.5 could be maintained by a newly constructed instrument. Test results from controlled stress and controlled strain rate measurement were consistent and yielded well-defined steady-state viscosities. Measurements appeared to be unaffected by sample geometry, although proper lubrication is important in achieving steady state. The measured biaxial viscosity appeared to be strain rate thinning above a biaxial strain rate of ≈ 0.01 s−1 at 160°C. As anticipated in the Newtonian region, biaxial elongational viscosity was approximately six times the shear viscosity. Thinning indices of both shear and biaxial elongational viscosities were 0.75. Data obtained at various temperatures were shifted following the timetemperature superposition principle. The resulting master curve could be fitted by a Carreau model with n ≈ 0.3 and a time constant of 110 s.  相似文献   

16.
Hydrophobically modified water-soluble block copolymers were prepared by aqueous micellar copolymerization of acrylamide and small amounts (2 and 3 mol %) of a hydrophobe (N-phenethylacrylamide) that is characterized by a long spacer that places the aromatic ring far away from the backbone, with the objective of investigating the copolymers' rheological behavior and surface and interfacial activities under various conditions such as polymer concentration, shear rate, temperature, and salinity. As expected, the block copolymers exhibit improved thickening properties attributed to intermolecular hydrophobic associations as the solution viscosity of the copolymers increases sharply with increasing polymer concentration. Additional evidence for intermolecular association is provided by the effect of NaCl, the presence of which substantially enhances the viscosity. An almost shear rate–independent viscosity (Newtonian plateau) is also exhibited at high shear rate and a typical non-Newtonian shear thinning behavior appears at low shear rates and high temperatures. Furthermore, the block copolymers exhibit high air–liquid surface and liquid–liquid interfacial activities as the surface and interfacial tensions decrease with increasing polymer concentration, indicating strong adsorption of the copolymer at the interface. The surface and interfacial tensions exhibited by the copolymers were found to be relatively insensitive to the concentration of salt (NaCl). © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 467–476, 2001  相似文献   

17.
There have been consistent efforts on understanding rheological behavior of molten mold flux, used in continuous casting of steels. It is prevalent view that molten mold flux shows non‐Newtonian behavior, meaning that the viscosity varies with shear rate history. Hence, the present study attempts to evaluate shear thinning, which is one of the characteristic non‐Newtonian behaviors, by measuring its viscosity with a rotating type viscometer at 1623 K. Furthermore, Raman spectroscopy analysis is used to appreciate the structure of molten mold flux and shear thinning. Mold fluxes tested reveal definite shear thinning characteristic of decreasing viscosity with increasing shear rate. The degree of shear thinning has been well quantified by Oswald‐De Waele power law model. Lastly, the degree of polymerization, obtained from Raman spectroscopic data has proportional relationship with degree of shear thinning in the range of 1–5 s?1 shear rate. Also, it has a downward parabolic relationship with degree of shear thinning at entire shear rate ranges up to 100 s?1. This study also verifies possibility to use shear thinning behavior on actual continuous casting process.  相似文献   

18.
The shear viscosity, extensional viscosity, and die swell of the PTT melt were investigated using a capillary rheometer. The results showed that the PTT melt was a typical pseudoplastic fluid exhibiting shear thinning and extensional thinning phenomena in capillary flow. There existed no melt fracture phenomenon in the PTT melt through a capillary die even though the shear rate was 20,000 s?1. Increasing the shear rate would decrease the flow activation energy and decline the sensitivity of the shear viscosity to the melt temperature. The molecular weight had a significant influence on the flow curve. The flow behavior of the PTT melt approached that of Newtonian fluid even though the weight‐molecular weight was below 43,000 s?1 at 260°C. The extensional viscosity decreased with the increase of the extensional stress, which became more obvious with increasing the molecular weight. The sensitiveness of the extensional viscosity to the melt temperature decreased promptly along with increasing the extensional strain rate. The die swell ratio and end effect would increase along with increasing the shear rate and with decreasing the temperature, which represented that the increase of the shear rate and the decrease of temperature would increase the extruding elasticity of the PTT melt in the capillary die. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 705–709, 2005  相似文献   

19.
The rubber particles included in rubber modified polymeric materials such as acrylonitrile‐butadiene‐styrene (ABS) polymer and impact modified polymers play an important role in determining their rheological properties, processing behavior, and mechanical properties. In this study both small strain oscillatory shear viscosity in the frequency range from 10?2 to 102 s?1 and uniaxial elongational viscosity behavior at two elongation rates ( = 0.1 and 1.0 s?1) over the range of temperatures from 140°C to 200°C were measured for commercial ABS polymers with different contents and deformability of rubber particles. The influences of rubber content and deformability on rheological properties such as melt elasticity, elongational viscosity, strain hardening and/or softening, the onset of nonuniform deformation, and thermoforming performance were investigated. The Wagner two‐parameter nonlinear viscoelastic constitutive model was used to describe strain hardening behavior, while the Considère criterion was used to determine the onset point of nonuniform deformation. The part thickness distribution obtained through use of a vacuum snap‐back forming process was simulated to investigate the effects of rheological changes associated with different rubber particles on the thermoforming performance. It was found that ABS polymers with larger contents of hard rubber particles exhibited more melt elasticity, stronger strain hardening, a maximum of biaxial elongational viscosity, onset of nonuniform deformation at later time, and better thermoforming performance. Strain hardening and the Considère criterion provide simple, reliable indicators of the thermoforming performance of ABS polymers.  相似文献   

20.
The rheology of a range of polymer melts has been measured at strain rates above those attained during conventional rheometry using an instrumented injection molding machine. Deviations from shear thinning behavior were observed at high rates, and previously unreported shear thickening behavior occurred for some of the polymers examined. Measured pressure and volumetric throughputs were used to calculate shear and extensional viscosity at wall shear strain rates up to 107 s?1. Parallel plate rheometry and twin bore capillary rheometry were used to provide comparative rheological data at low and medium shear strain rates, respectively. Commercial grades of polyethylene, polypropylene, polystyrene, and PMMA were studied. Measured shear viscosity was found to follow Newtonian behavior at low rates and shear thinning power law behavior at intermediate strain rates. At shear strain rates approaching or above 106 s?1, shear viscosity reached a rate‐independent plateau, and in some cases shear thickened with further increase in strain rate. A relationship between the measured high strain rate rheological behavior and molecular structure was noted, with polymers containing larger side groups reaching the rate‐independent plateau at lower strain rates than those with simpler structures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号