共查询到20条相似文献,搜索用时 15 毫秒
1.
L.F. Voss L. Stafford G.T. Thaler C.R. Abernathy S.J. Pearton J.-J. Chen F. Ren 《Journal of Electronic Materials》2007,36(4):384-390
Schottky contact formation on p-GaN using W2B/Pt/Au and W2B5/Pt/Au metallization schemes was investigated using x-ray photoelectron spectroscopy (XPS), current-voltage (I-V), and Auger electron spectroscopy measurements. The Schottky barrier height (SBH) determined from XPS is 2.71 eV and 2.87 eV for as-deposited W2B- and W2B5-based contacts, respectively. By comparison, fitting of the I-V curves using the thermionic field emission model gives unphysical SBHs > 4 eV due to the presence of an interfacial layer acting as an additional barrier to carrier transport. Upon annealing to ∼600–700°C, the diodes show slight deterioration in rectifying behavior due to the onset of metallurgical reactions with the GaN. The experimental dependence of the reverse leakage current on bias and measurement temperature is inconsistent with both thermionic emission and thermionic field emission models, suggesting that leakage must originate from other mechanisms such as surface leakage or generation in the depletion layer through deep-level defects. 相似文献
2.
Noise characteristics of a Read Avalanche diode are analyzed by incorporating the tunneling mechanism of the electron into the avalanche mechanism.Analytical expressions are presented for the mean square noise voltage and noise measure in MITATT(mixed tunneling and avalanche transit time) mode operation.A wide band gap semiconductor(4H-SiC) based MITATT diode is considered to study the effect of tunneling on the noise characteristics and negative conductance.While exhibiting enough potential for 4H-SiC to be used as a terahertz source of power in the MITATT mode,our results record a noise measure of 35.18 dB at a frequency of 1.5 THz. 相似文献
3.
4.
X. A. Cao S. F. LeBoeuf K. H. Kim P. M. Sandvik E. B. Stokes A. Ebong D. Walker J. Kretchmer J. Y. Lin H. X. Jiang 《Solid-state electronics》2002,46(12):2291-2294
The mechanisms of carrier injection and recombination in a GaN/InGaN single quantum well light-emitting diodes have been studied. Strong defect-assisted tunneling behavior has been observed in both forward and reverse current–voltage characteristics. In addition to band-edge emission at 400 nm, the electroluminescence has also been attributed to radiative tunneling from band-to-deep level states and band-to-band tail states. The approximately current-squared dependence of light intensity at 400 nm even at high currents indicates dominant nonradiative recombination through deep-lying states within the space-charge region. Inhomogeneous avalanche breakdown luminescence, which is primarily caused by deep-level recombination, suggests a nonuniform spatial distribution of reverse leakage in these diodes. 相似文献
5.
研究了采用MOCVD技术分别在100与500Torr反应室压力下生长的非故意掺杂GaN薄膜的光学与电学性能。研究表明,低压100Torr外延生长条件可以有效地降低Ga与NH3气相反应造成GaN薄膜的碳杂质沾污,从而抑制造成光致发光中黄光峰与蓝光峰的深受主的形成,所制备的材料表现出较好的光学性能。同时,不同生长压力下的GaN薄膜表现出相异的电学性能,即在500Torr下生长的样品通常表现出更高的载流子浓度((4.6-6.4)×1016 cm-3)与更高的迁移率(446-561cm2/(V.s)),而100Torr下生长的样品通常表现为更低的载流子浓度(1.56-3.99)×1016 cm-3与更低迁移率(22.9-202cm2/(V.s))。 相似文献
7.
研究了GaN HFET中沟道热电子隧穿到表面态及表面态电子跃迁到表面导带两种跃迁过程及其激活能.从沟道热电子隧穿过程出发,提出了新的电流崩塌微观模型.用该微观模型解释了光离化谱、DLTS、瞬态电流及电流崩塌等各类实验现象.研究了各种异质结构的不同电流崩塌特性,在此基础上讨论了无电流崩塌器件的优化设计. 相似文献
8.
自洽求解薛定谔方程和泊松方程求出了异质结能带和沟道阱基态、激发态及二维表面态的波函数.研究了 表面陷阱位置及其激活能.发现表面高密度缺陷减薄了势垒层,显著增强了热电子隧穿过程.从缺陷态发射电子和 热电子隧穿构成的新陷阱模型出发,解释了HFET的瞬态电流和产生.复合噪声.最后讨论了改进材料生长和器件 工艺来抑制陷阱效应,改善器件性能的途径. 相似文献
9.
随着氮(N)面GaN材料生长技术的发展,基于N面GaN衬底的高亮度发光二极管(LED)的研究具有重要的科学意义.研究了具有高发光功率的N面GaN基蓝光LED的新型结构设计,通过在N面LED的电子阻挡层和多量子阱有源层之间插入p型InGaN/GaN超晶格来提高有源层中的载流子注入效率.为了对比N面GaN基LED优异的器件性能,同时设计了具有相同结构的Ga面LED.通过对两种LED结构的电致发光特性、有源层中能带图、电场和载流子浓度分布进行比较可以发现,N面LED在输出功率和载流子注入效率上比Ga面LED有明显的提升,从而表明N面GaN基LED具有潜在的应用前景. 相似文献
10.
C. D. Lee V. Ramachandran A. Sagar R. M. Feenstra D. W. Greve W. L. Sarney L. Salamanca-Riba D. C. Look Song Bai W. J. Choyke R. P. Devaty 《Journal of Electronic Materials》2001,30(3):162-169
The structural, electrical, and optical properties of GaN grown on 6H-SiC(0001) substrates by molecular beam epitaxy are studied.
Suitable substrate preparation and growth conditions are found to greatly improve the structural quality of the films. Threading
dislocation densities of about 3×109 cm−2 for edge dislocations and <1×106 cm−2 for screw dislocations are achieved in GaN films of 0.8 μm thickness. Mechanisms of dislocation generation and annihilation
are discussed. Increasing the Ga to N flux ratio used during growth is found to improve the surface morphology. An unintentional
electron concentration in the films of about 5×1017 cm−3 is observed, and is attributed to excess Si in the films due to a Si-cleaning step used in the substrate preparation. Results
from optical characterization are correlated with the structural and electronic studies. 相似文献
11.
Surface structural, electronic and electrical properties of the quaternary alloy AlInGaN/GaN heterostructures are investigated. Surface termination, atomic arrangement, electronic and electrical properties of the (0001) surface and (10–11) V-defect facets have been experimentally analyzed using various surface sensitive techniques including spectroscopy and microscopy. Moreover, the effect of sub-band gap (of the barrier layer) illumination on contact potential difference (VCPD) and the role of oxygen chemisorption have been studied. 相似文献
12.
Ding Wang Juan Su Zhaoying Chen Tao Wang Liuyun Yang Bowen Sheng Shaojun Lin Xin Rong Ping Wang Xiangyang Shi Wei Tan Jian Zhang Weikun Ge Bo Shen Yinong Liu Xinqiang Wang 《Advanced Electronic Materials》2019,5(2)
Resonant tunneling diodes (RTDs) are candidates for high power terahertz oscillators, and form the basis for understanding the quantum confinement and vertical transport in quantum structures such as quantum cascade lasers and quantum cascade detectors. In this work, repeatable negative differential resistance (NDR) is achieved in AlN/GaN RTDs grown on sapphire substrate by plasma‐assisted molecular‐beam epitaxy. Two reproducible NDR regions sequentially following two preresonance replicas are demonstrated at room temperature. A current region exhibiting negative correlation with temperature and oscillation‐like features is first identified under reverse bias, which is interpreted as a combined contribution of weak resonant tunneling channels through different bound states in the well. The revealed peak‐to‐valley current ratio ranges from 1.1 to 1.8, and peak current density ranges from 5 to 164 kA cm−2. Using an analytic model, resonant tunneling transports in both bias directions are quantitatively characterized and show good agreements with experiment results, demonstrating the capability of accurate quantum transport control using III‐nitride grown on sapphire substrate. The findings will promote the implementation of low cost III‐nitride monolithic microwave circuits and resonant tunneling structures based on sapphire, SiC, and even silicon substrates. 相似文献
13.
正We studied the performance of AlGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) with an AlGaN buffer layer,which leads to a higher potential barrier at the backside of the twodimensional electron gas channel and better carrier confinement.This,remarkably,reduces the drain leakage current and improves the device breakdown voltage.The breakdown voltage of AlGaN/GaN double heterojunction HEMTs (~ 100 V) was significantly improved compared to that of conventional AlGaN/GaN HEMTs(~50 V) for the device with gate dimensions of 0.5 x 100μm and a gate-drain distance of 1μm.The DH-HEMTs also demonstrated a maximum output power of 7.78 W/mm,a maximum power-added efficiency of 62.3%and a linear gain of 23 dB at the drain supply voltage of 35 V at 4 GHz. 相似文献
14.
We compared several different band-to-band tunneling(BTBT) models with both Sentaurus and the two-dimensional full-band Monte Carlo simulator in Si homo-junctions and Si-Ge hetero-junctions. It was shown that in Si homo-junctions, different models could achieve similar results. However, in the Si-Ge hetero-junctions, there were significant differences among these models at high reverse biases(over 2 V). Compared to the nonlocal model, the local models in Sentaurus underrated the BTBT rate distinctly, and the Monte Carlo method was shown to give a better approximation. Additionally, it was found that in the Si region near the interface of the Si-Ge hetero-junctions, the direct tunneling rates increased largely due to the interaction of the band structures of Si and Ge. 相似文献
15.
本文论述了AlGaN/GaN双异质结高电子迁移率晶体管的特性,该结构使用Al组分为7%的AlGaN来代替传统的GaN作为缓冲层。Al0.07Ga0.93N缓冲层增加了二维电子气沟道下方的背势垒高度,有效提高了载流子限阈性,从而造成缓冲层漏电的显著减小以及击穿电压的明显提高。对于栅尺寸为0.5100μm,栅漏间距为1μm的器件,AlGaN/GaN 双异质结器件的击穿电压(~100V)是常规单异质结器件的两倍(~50V)。本文中的双异质结器件在漏压为35V、频率为4GHz下,最大输出功率为7.78W/mm,最大功率附加效率为62.3%,线性增益为23dB。 相似文献
16.
C. B. Soh D. Z. Chi A. Ramam H. F. Lim S. J. Chua 《Materials Science in Semiconductor Processing》2001,4(6):353
Deep level defects in both p+/n junctions and n-type Schottky GaN diodes are studied using the Fourier transform deep level transient spectroscopy. An electron trap level was detected in the range of energies at Ec−Et=0.23–0.27 eV with a capture cross-section of the order of 10−19–10−16 cm2 for both the p+/n and n-type Schottky GaN diodes. For one set of p+/n diodes with a structure of Au/Pt/p+–GaN/n–GaN/n+–GaN/Ti/Al/Pd/Au and the n-type Schottky diodes, two other common electron traps are found at energy positions, Ec−Et=0.53–0.56 eV and 0.79–0.82 eV. In addition, an electron trap level with energy position at Ec−Et=1.07 eV and a capture cross-section of σn=1.6×10−13 cm2 are detected for the n-type Schottky diodes. This trap level has not been previously reported in the literature. For the other set of p+/n diodes with a structure of Au/Ni/p+–GaN/n–GaN/n+–GaN/Ti/Al/Pd/Au, a prominent minority carrier (hole) trap level was also identified with an energy position at Et−Ev=0.85 eV and a capture cross-section of σn=8.1×10−14 cm2. The 0.56 eV electron trap level observed in n-type Schottky diode and the 0.23 eV electron trap level detected in the p+/n diode with Ni/Au contact are attributed to the extended defects based on the observation of logarithmic capture kinetics. 相似文献
17.
Aritra Acharyya Moumita Mukherjee J.P. Banerjee 《International Journal of Electronics》2013,100(9):1429-1456
In this paper, the influence of tunnelling on the RF performance of millimetre-wave (mm-wave) impact ionisation avalanche transit time (IMPATT) diodes operating in mixed tunnelling and avalanche transit time mode is studied by taking into account the parasitic series resistance of the device. The results show that the parasitic resistance of mm-wave IMPATTs increases and consequently the power delivered by the device decreases due to the consequence of band-to-band tunnelling. The critical background doping concentration and operating frequency are found to be 5.0 × 1023 m?3 and 260 GHz, respectively, above which the influence of tunnelling on the RF performance of the device becomes predominant. 相似文献
18.
Ding Wang Zhaoying Chen Juan Su Tao Wang Baoqing Zhang Xin Rong Ping Wang Wei Tan Shiping Guo Jian Zhang Bo Shen Xinqiang Wang 《Advanced functional materials》2021,31(8):2007216
Resonant tunneling of electrons is important for the manufacture of high-speed electronic oscillators and the electron injection control in quantum cascade lasers. In this work, room temperature negative differential resistance (NDR) in AlGaN/GaN double barrier structure with AlN/GaN digital alloy (DA) barriers is demonstrated. The peak-to-valley current ratio (PVCR) ranges from 1.1 to 1.24 at room temperature and becomes 1.5 to 2.96 at low temperatures, whereas no NDR is observed in double barrier structures with conventional ternary AlGaN barriers. The room temperature NDR together with the high PVCR at low temperature is attributed to the suppression of alloy disorder scattering by introducing AlN/GaN DA barriers. This work presents the successful control of phase-coherent electron transport in III-nitride heterostructures and is expected to benefit the future design of nitride-based resonant tunneling structures and high-speed electronic devices. 相似文献
19.
为研究量子点发光器件结构与性能的关系,制备了以CdSe/ZnS量子点作为发光层、poly-TPD作为空穴传输层,Alq3作为电子传输层的量子点发光二极管,对器件结构及性能参数进行了表征,结果显示器件具有开启电压低、色纯度高等特点.结合测试数据,对量子点发光二极管进行了器件结构建模,利用隧穿模型及空间电荷限制电流模型对实验结果进行了分析,研究了器件中载流子的注入与传输机理.器件测试与仿真结果表明:各功能层厚度会影响载流子在量子点层的注入平衡,同时器件中载流子的注入与传输存在一转变电压,当外加电压低于转变电压时,器件中载流子的注入主要符合隧穿模型;当外加电压高于转变电压时,器件中载流子的注入主要符合空间电荷限制电流模型.研究结果验证了器件结构建模的合理性,可以利用仿真的方法进行器件结构优化并确定相关参数,这对器件性能的提高具有指导意义. 相似文献
20.
针对国际上太赫兹器件技术进展予以概括和分析,提炼出共振隧穿二极管、单向载流子传输光电二极管2种可行的小型化器件方案。在材料生长和器件结构方面分析了太赫兹波的产生原理和难点,在系统应用方面解释了短距离高速通信的实用案例。目前,采用共振隧穿二极管已实现2.5 Gbps速率的300 GHz无线通信演示实验,采用单向载流子传输光电二极管在该频点下实现了12.5 Gbps的无线通信实验。 相似文献