首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An equiatomic quinary AlCoCrFeNi high entropy alloy (HEA) has been synthesized by mechanical alloying. Milled powder after 30?h shows good chemical homogeneity and refined morphology with a mean particle size of ~4?μm. Solid solution phase with BCC crystal structure (a?=?2.89?±?0.02?Å) has been confirmed from XRD and transmission electron microscopy in the as-synthesized high entropy alloy. The milled alloy powder is not thermally stable. Differential scanning calorimetric (DSC) thermogram of 30?h milled powder exhibits the presence of a small peak at ~600?°C (873?K) with a thermal shift near the peak. This thermal shift indicates the diffusive type of phase transformation in this alloy while heating. The analysis of the in-situ heating X-ray diffraction patterns at various temperatures extends support to the diffusive nature of the phase transformation. Upon heat treatment, the disordered BCC solid solution phase partially transforms to Ni3Al prototype L12 phase which precipitates at a lower temperature (350?°C (623?K)) as observed by in-situ XRD experiments. However, at high temperature annealing (575–800?°C (848–1073?K)) the evolution of a partially ordered BCC phase (B2) with lattice parameter (a?=?2.87?±?0.02?Å), and L12 phase (a?=?3.58?±?0.05?Å), along with tetragonal σ phase (a?=?8.8?Å and c?=?4.53?Å) are observed. Similar types of phases have also been identified after annealing and microwave sintering at 800?°C (1073?K) & 900?°C (1173?K) respectively. The transformation of ordered BCC phases along with two intermetallics such as L12 phase and σ phase suggests that the evolution of the high entropy phase in the milled condition leads to a combination of high entropy and medium entropy phases in the annealed condition.  相似文献   

2.
AlCoFeNiTiZn high entropy alloy was successfully produced in powder form by the mechanical alloying process. The ball-milled alloyed product was characterized by X-ray diffractometry, scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy techniques, which indicated that after 120 h of milling, the solid solution was formed as predicted by thermodynamic calculations. Mechanical alloying began to form the BCC phase almost at 30 h and the FCC phase after about 30 h. Nucleation and growth were the processes involved in the formation of these phases, as shown by the Johnson-Mehl-Avrami kinetic model. Sintering was then used to fabricate the alloy in bulk metallic form. The powders were cold pressed and sintered after 120 h of mechanical alloying using a tube furnace with a controlled atmosphere at 500 °C. A similar FCC + BCC phase mixture was present after sintering. The sintered sample also contained minor amounts of Gahnite (ZnAl2O4) spinel material. DSC analysis revealed that recrystallization occurred at 280 °C. The as-milled and as-sintered alloys exhibit semi-hard magnetic properties measured by vibrating sample magnetometer (VSM), with saturation magnetization values of 39.14 and 65.78 emu/g, respectively.  相似文献   

3.
We report on an alternative route for the synthesis of crystalline Co–28Cr–6Mo alloy, which could be used for surgical implants. Co, Cr and Mo elemental powders, mixed in an adequate weight relation according to ISO Standard 58342-4 (ISO, 1996), were used for the mechanical alloying (MA) of nano-structured Co-alloy. The process was carried out at room temperature in a shaker mixer mill using hardened steel balls and vials as milling media, with a 1:8 ball:powder weight ratio. Crystalline structure characterization of milled powders was carried out by X-ray diffraction in order to analyze the phase transformations as a function of milling time. The aim of this work was to evaluate the alloying mechanism involved in the mechanical alloying of Co–28Cr–6Mo alloy. The evolution of the phase transformations with milling time is reported for each mixture. Results showed that the resultant alloy is a Co-alpha solid solution, successfully obtained by mechanical alloying after a total of 10 h of milling time: first Cr and Mo are mechanically prealloyed for 7 h, and then Co is mixed in for 3 h. In addition, different methods of premixing were studied. The particle size of the powders is reduced with increasing milling time, reaching about 5 μm at 10 h; a longer time promotes the formation of aggregates. The morphology and crystal structure of milled powders as a function of milling time were analyzed by scanning electron microscopy and XR diffraction.  相似文献   

4.
A TiH2–50 wt.% Ni powder alloy was mechanically milled in an argon gas atmosphere using milling times up to 480 min. A TiAl intermetallic alloy was joined by vacuum furnace brazing using the TiH2–50 wt.% Ni powder alloy as the filler metal. The effect of mechanical milling on the microstructure and shear strength of the brazed joints was investigated. The results showed that the grains of TiH2–50 wt.% Ni powder alloy were refined and the fusion temperature decreased after milling. A sound brazing seam was obtained when the sample was brazed at 1140 °C for 15 min using filler metal powder milled for 120 min. The interfacial zones of the specimens brazed with the milled filler powder were thinner and the shear strength of the joint was increased compared to specimens brazed with non-milled filler powder. A sample brazed at 1180 °C for 15 min using TiH2–50 wt.% Ni powder alloy milled for 120 min exhibited the highest shear strength at both room and elevated temperatures.  相似文献   

5.
《Advanced Powder Technology》2021,32(12):4687-4696
High entropy alloys were designed from equiatomic multicomponent systems using powder metallurgy including mechanical alloying and sintering. The structure and morphology of the resulting alloys were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy techniques and their hardness values were also determined in the Vickers scale. The results indicate under the milling conditions used, the AlCoFeNiZn, AlCoFeNiMoTi and AlCoFeNiMoTiZn alloys crystallized forming BCC structures whereas the AlCoFeNi alloy presented two different phases, one with FCC structure and the other one with BCC. The synthesis method resulted in alloys with grain sizes in the nano scale having values between 4.1 and 9.4 nm on the powder form up to 40.1 nm after sintering phenomenon which lead to phase transformations which were more evident in the Mo-containing alloys. In addition, the AlCoFeNiZn and AlCoFeNiMoTiZn alloys did not show Zn traces after sintering as it was suggested by chemical analyses using energy dispersive spectroscopy, suggesting it is lost by evaporation during sintering process. Mo-containing systems exhibited the highest microhardness in both milled and sintered conditions.  相似文献   

6.
《Advanced Powder Technology》2020,31(7):2742-2748
Ball milling (BM) of elemental Co and Al was conducted for 30 h (h). This process has altered the original morphologies of both elemental Co and Al powders. Spherical Al powder particles has changed into a smooth pancake-shape while the original irregular-shaped Co agglomerates became disintegrated ultrafine particles. BM of the Co20 wt.% Al powder mixture after 30 h yielded thin irregular-shaped particles. XRD analysis revealed a partial structural transformation after BM and further structural change upon annealing the powder at 600 °C, as confirmed by the SEM images. The formation of the cubic spinel superstructure with lattice parameter a = 8.066 Å (ZnAl2O4 prototype) and Fd-3 m # 227 space group was realized. By means of LEO 1525 field-emission scanning electron microscope (FE-SEM), a fibrous mesoporous structure was revealed on the milled powder after annealing the Co-Al mixture at 600 °C. The EDS analysis confirmed a minor N impurity on the annealed powder.  相似文献   

7.
FeNiCo base powder alloy with nominal composition Fe-27Ni-17Co-4Ti (wt%) was prepared from elemental powders by mechanical alloying. The structure of milled powders was characterized by XRD and SEM. The effect of nanosize structure on magnetic properties and shape memory behavior was studied using VSM and DSC. After milling for 240 minutes by high energy vibrational ball mill under argon atmosphere, supersaturated solid solution formed with mean crystallite size of ??20?nm. Results of VSM examinations showed that by milling for 240 minutes saturation magnetization and intrinsic coercivity reached 304 emu/gr and 21 Oe, respectively. XRD analyses made it clear that transformation from BCC to FCC phase has occurred after annealing supersaturated milled powder at 650 °C for 60?minutes. DSC curves indicated that martensite transformation in this alloy was suppressed due to refinement of the microstructure.  相似文献   

8.
《Advanced Powder Technology》2020,31(5):1985-1993
Thermal stability of mechanically alloyed nanocrystalline AlxCoCrFeNi (x = 0, 0.3, 0.6, 1 mol) high entropy alloys (HEAs) has been investigated for the low and intermediate temperature range of 673–1073 K. Single phase FCC structure is observed in the as milled CoCrFeNi. A mixture of FCC and BCC phases is exhibited by × = 0.3, 0.6 and 1, alloys where the volume fraction of BCC increases with increasing Al content. Phase evolution in heat-treated AlxCoCrFeNi HEAs proceeds via increasing BCC fraction at 673 K, followed by subsequent reduction at elevated temperatures. For each alloy, the major phase observed in as milled condition and it is retained even after prolonged exposure at the 1073 K. Al favors the formation of the BCC phase due to its high affinity to form ordered B2 structures with constituent elements Co, Fe and Ni. Thermal exposure of AlxCoCrFeNi HEAs also leads to the formation of Cr7C3, owing to the higher negative free energy of carbide formation for Cr among other constituents. Transmission electron microscopy (TEM) investigations substantiated that nanostructure of milled powder is maintained even after the heat treatment. Grain growth factor for quinary HEAs is relatively lower than quaternary CoCrFeNi owing to their slower rates of diffusion.  相似文献   

9.
In the present work, mechanical alloying has been applied to the Pb-Al immiscible binary system by using the method of high energy ball milling. The microstructural features of the milled powder, such as grain size, lattice constant and morphology of phases have been studied by X-ray diffraction, analytical transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Besides, energy dispersive spectroscopy was used to analysis chemical composition of phases presented after milling. Differential Scanning Calorimetry measurement was also made on the milled Pb-Al powder. The results show that homogenous blending of Pb and Al can be easily achieved by high energy ball milling in spite of their mutual immiscibility and large difference in density. The obtained alloy exhibits nanocrystalline microstructure. Further more, the experiment result implies the formation of supersaturated solid solution in immiscible Pb-Al system by high energy ball milling.  相似文献   

10.
Mechanical alloying of Ni–Ge elemental powder blends was carried out in a high-energy SPEX shaker mill to study phase evolution as a function of milling time. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy techniques were employed to characterize the phases present in the milled powders. It was noted that a supersaturated solid solution formed in the early stages of milling containing up to about 12 at.% Ge. On continued milling, the equilibrium NiGe phase started to form at 5 h, and its amount in the powder increased with increasing milling time. On milling for about 60 h, the equilibrium intermetallic NiGe and Ge powder particles reacted to form the metastable NiGe2 phase. Reasons for the formation of this metastable phase at room temperature and at atmospheric pressure, which is normally present at high temperatures and under high pressures, have been discussed.  相似文献   

11.
Single phase nanocrystalline hydroxyapatite (HAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO3 and CaHPO4 powders in open air at room temperature, for the first time, within 2 h of milling. Nanocrystalline hexagonal single crystals are obtained by sintering of 2 h milled sample at 500 °C. Structural and microstructural properties of as-milled and sintered powders are revealed from both the X-ray line profile analysis and transmission electron microscopy. Shape and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Particle size of HAp powder remains almost invariant up to 10 h of milling and there is no significant growth of nanocrystalline HAp particles after sintering at 500 °C for 3 h. Changes in lattice volume and some primary bond lengths of as-milled and sintered are critically measured, which indicate that lattice imperfections introduced into the HAp lattice during ball milling have been reduced partially after sintering the powder at elevated temperatures. We could achieve ~ 96.7% of theoretical density of HAp within 3 h by sintering the pellet of nanocrystalline powder at a lower temperature of 1000 °C. Vickers microhardness (VHN) of the uni-axially pressed (6.86 MPa) pellet of nanocrystalline HAp is 4.5 GPa at 100 gm load which is close to the VHN of bulk HAp sintered at higher temperature. The strain-hardening index (n) of the sintered pellet is found to be > 2, indicating a further increase in microhardness value at higher load.  相似文献   

12.
A ductile Cu–Al–Mn–Ti–B shape memory alloy with high fatigue strength has been prepared via mechanical alloying and powder metallurgy. With increasing milling time, the size of the crystallite grains decreases. Cu diffraction pattern appeared only after milling at a speed of 300 rpm for 25 h. The single phase CuAlMnTiB solid solution powder after 35 h milling was hot-pressed and extruded to form the final alloy. The quenched alloy had a single β phase at room temperature and its yield strength, maximum strength and strain were measured to be 390 MPa, 1015 MPa and 14.4%, respectively. The aged alloy showed a martensite structure at room temperature and had a shape memory recovery of 92% after 120 cycles.  相似文献   

13.
《Advanced Powder Technology》2014,25(4):1334-1338
An equiatomic CoCrFeNiMnAl high-entropy alloy was synthesized by mechanical alloying, and alloying behaviors, microstructure and annealing behaviors were investigated. It was found that a solid solution with refined microstructure of 20 nm in grain size could be obtained after 30 h milling. As-milled powder transformed into a face-centered cubic phase above 500 °C. The as-milled powder was subsequently consolidated by spark plasma sintering at 800 °C, BCC phase and FCC phase coexisted in the consolidated HEA, which had excellent properties in Vickers hardness of 662 HV and compressive strength of 2142 MPa.  相似文献   

14.
The present work is focused on the understanding of the phase and microstructural evolution during mechanical alloying of 82Cu–14Al–4Ni powder mixture. Morphology and phase evolution in the milled powder at different stages of milling were studied and a physical modeling of the mechanical alloying has been proposed. It has been demonstrated that milling process mainly consisted of four stages, i.e., flattening and cold welding of powder particles to form a porous aggregate followed by its fragmentation, plastic deformation of small aggregates to form layered particles, severe plastic deformation of layered particles to form elongated flaky particles, and fragmentation of elongated particles into smaller size flaky powder particles. It was also found that the initial period of milling resulted in rapid grain refining, whereas alloying was accomplished during the later period of milling. TEM study of the 48 h milled powder revealed that the microstructure was equiaxed nanocrystalline in nature. It was found that the grains were either randomly distributed or arranged as banded type. A possible explanation for such a behavior has been presented.  相似文献   

15.
This research article focused on developing Al0.3CrFeNiCo0.3Si0.4 nanocrystalline high-entropy alloy (HEA) by mechanical alloying. The initial powders mixture was ball milled for 1 hr (HEA-1 h), 5 hr (HEA-5 h), 15 hr (HEA-15 h) and 25 hr (HEA-25 h) at ball to powder mass ratio (BPR) of 15:1 and a speed of 300 rpm. The mechanical alloying time was varied from 1 to 25 hr to ensure the nanocrystalline nature and attainment of steady state in HEA powders. The structure of the developed HEAs was characterized by means of X-ray diffraction (XRD), Laser particle size analyzer (LPSA), and various electron microscopes (TEM and FEGSEM with EDS). HEA-25hr sample exhibited the crystallite size of 13.8 nm with lattice strain of 0.67% obtained from XRD which matched the result by TEM. The formation of a solid solution (SS) with a uniform elemental dispersion was observed with a major BCC stable structure and a minor FCC structure in HEA-25 h sample. The HEA-25 h sample revealed an average particle size of 386.2 nm (89.8% peak intensity) with Polydispersity Index (PDI) value of 0.364 which confirmed the uniform distribution of particles over a narrow range of particle size. The synthesized powders were consolidated to green compacts with a loading rate of 1 mm/min at different compaction pressures (25, 50, 75, 100, 150, 200, 400, 600, 800, 1000, and 1100 MPa) for examining the powder particles packing. Several compaction models (both linear and non-linear) were discussed to establish the density-pressure relationship of developed HEAs. The results revealed that the milling time has influenced the relative density. HEA-1 h sample was exhibited the relative density of 0.76 whereas HEA-25 h sample was produced the relative density of 0.6 indicating more strength and more amount of strain hardening occurs in MAed HEA-25 sample in addition to the entropy effect for the same composition.  相似文献   

16.
《Advanced Powder Technology》2020,31(5):1789-1795
Titanium carbohydride-based composites were produced by one-, two- and three-stage ball milling of titanium-copper powder mixture in liquid hydrocarbon and subsequent annealing at 600 °C for 1 h in argon. The phase composition and morphology of the milled and annealed powders were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Single-stage milling of titanium-copper mixture followed by its annealing was shown to result in the formation of the titanium carbohydride and intermetallic phases which may deteriorate the composite properties because of their high brittleness. Addition of copper at the second stage of the two-stage milling lowered the fraction of intermetallic phases. Octadecylamine added as a surfactant in the three-stage ball milling aided to prevent the formation of intermetallic phases under both milling and subsequent annealing owing to the formation of a barrier adsorption layer on the particle surface.  相似文献   

17.
Present work reports the thermal stability and thermal expansion behavior of dual-phase FeCoCrNi2Al HEA prepared by Mechanical Activated Synthesis and consolidated by hot pressing. The thermal stability of the phases present in FeCoCrNi2Al HEA has been extensively studied using in-situ high-temperature X-ray diffraction (HT-XRD) in conjunction with dilatometry and differential scanning calorimetry (DSC). The DSC thermogram shows a single endothermic peak at 1430 °C (1703 K) which belongs to the melting point of the alloy. HT-XRD and dilatometry experiments were carried out from room temperature to 1000 °C (1273 K). HT-XRD study has shown that the room temperature FCC + BCC (face-centred cubic + body-centred cubic) phases remains stable up to 1000 °C (1273 K). Although the amount of BCC phase has increased above 800 °C (1073 K), no additional phase formation was observed in HT-XRD. The coefficient of thermal expansion (CTE) curve shows linear increment up to 1000 °C (1273 K) with a slight change in slope beyond 800 °C (1073 K). Theoretical CTE was computed using the lattice parameter of the FCC phase, obtained from HT-XRD, as a function of temperature and compared with experimental CTE. Third-order polynomial equation was fitted to the experimental CTE data and the constants were evaluated which can be used to predict the coefficient of thermal expansion of the alloy.  相似文献   

18.
In this study, an equiatomic CoCrFeMnNi high entropy alloy (HEA) was fabricated by a rapid solidified gas atomization process. Subsequently, the high-energy mechanical milling was carried out to further refine the microstructure of pre-alloyed powder to improve the sintering ability and strengthening of HEAs. The microscopic results show that the powder morphology significantly changed from spherical to flatten, flake, irregular, and partially spherical shape with increasing milling time. The XRD results exhibited HEA bulks consisting of major FCC and minor Cr7C3 phases. The hardness of HEA bulks increased from 270±10 Hv to 450±10 Hv with increasing milling time, while the compressive yield strength increased from 370 MPa to 1050 MPa due to grain boundary strengthening and dislocation strengthening. Meanwhile, the lowest coefficient of friction ~0.283 and specific wear rate ~1.03×10-5 mm3/Nm were obtained for the 60 min milled HEA due to increased surface hardness and oxidation behavior. The developed powder metallurgy approach could be considered as a promising way to improve the strength and wear resistance when compared to the conventional processed CoCrFeMnNi HEAs.  相似文献   

19.
《Advanced Powder Technology》2014,25(5):1500-1509
Particulate TiO2 (with varying particle size produced by mechanical milling) dispersed AA7075 composites are synthesised by short duration milling (10 min) followed by room temperature unidirectional compaction (with varying pressure) and sintering. Apparent and relative density of the alloy powder and composites are measured. The effect of reinforcement particle size on the compressibility behaviour of the composites is demonstrated. Mechanically milled (for 25 h) alloy powder shows lower relative density than coarse alloy powder. In addition, compressibility of the alloy composites decreases with decreasing particle size of the reinforcement. In contrast, the sinterability of the composites increases with decreasing dispersoid’s size due to easy filling up of finer pores and particle induced precipitation.  相似文献   

20.
《Advanced Powder Technology》2019,30(11):2759-2767
The present study reports the microstructural and morphological changes during high energy ball milling of Cu with Ag and Graphite flakes. XRD patterns of ball milled Cu-Ag showed a reduction in the intensity of Ag peaks (1 1 1) and an increase in the lattice parameter of Cu. With an increase in milling time, the formation of metastable Cu-Ag solid solution was observed. Lattice parameter values for 40 h milled Cu (3.6169 Å) and Cu-GF composites (3.6166 Å) indicated that C does not dissolve in Cu. The lattice parameter of Cu in milled Cu-Ag-graphite flake was lower compared to milled Cu-Ag mixture indicating that graphite flakes inhibit solid solution formation. Raman spectra revealed that graphite flakes were converted into multilayer graphene after 10 h of milling. The crystallite size of Cu in the milled powders decreased with increase in milling time and reached a value of ∼25 nm after 35 h of milling. The lattice strain also increased with milling time. The D10, D50 and D90 size reduced appreciably after 5 h of milling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号