共查询到13条相似文献,搜索用时 15 毫秒
1.
A photocatalyst comprising nano-sized TiO(2) particles on granular activated carbon (GAC) was prepared by a sol-dipping-gel process. The TiO(2)/GAC composite was characterized by scanning electron microscopy (SEM), X-ray diffractiometry (XRD) and nitrogen sorptometry, and its photocatalytic activity was studied through the degradation of humic acid (HA) in a quartz glass reactor. The factors influencing photocatalysis were investigated and the GAC was found to be an ideal substrate for nano-sized TiO(2) immobilization. A 99.5% removal efficiency for HA from solution was achieved at an initial concentration of 15 mg/L in a period of 3h. It was found that degradation of HA on the TiO(2)/GAC composite was facilitated by the synergistic relationship between surface adsorption characteristics and photocatalytic potential. The fitting of experimental results with the Langmuir-Hinshelwood (L-H) model showed that the reaction rate constant and the adsorption constant values were 0.1124 mg/(L min) and 0.3402 L/mg. The latter is 1.7 times of the calculated value by fitting the adsorption equilibrium data into the Langmuir equation. 相似文献
2.
为了利用TiO_2优越的光催化活性和蒙脱土(MMT)的结构特性,首先,以MMT为载体、TiCl_4为原料、氨水为沉淀剂,采用水解沉淀法制备了TiO_2/MMT复合材料;然后,利用FTIR、XRD和SEM对TiO_2/MMT复合材料进行成分、晶型、结构和形貌表征;最后,在紫外光照射下,考察了不同TiO_2含量的TiO_2/MMT复合材料对模拟苯酚废水的光催化降解活性,并结合紫外-可见光谱对复合材料光催化降解苯酚的过程进行了跟踪实验。结果表明:所制备的TiO_2/MMT复合材料中TiO_2为锐钛矿相,在MMT上的晶粒尺寸为7.8nm。TiO_2/MMT复合材料中层间域内成分被钛柱取代,且柱撑反应在层间域内进行。因此MMT的基本骨架不变,且TiO_2分散在MMT的表面。当苯酚的初始浓度为10mg/L、苯酚溶液的pH为6且紫外光照射时间为150min时,37.5wt%TiO_2/MMT复合材料对苯酚降解率为63%,优于MMT(4.5%)和纯TiO_2(55%),说明MMT的负载提高了TiO_2的光催化活性。 相似文献
3.
《Advanced Powder Technology》2020,31(8):3582-3596
BiOBr and BiOCl were decorated on TiO2 QDs through n-p-p heterojunctions by a simple strategy and they were applied for degradation of three organic dyes upon visible illumination. The obtained photocatalysts were analyzed via XRD, FESEM, EDX, UV–vis DRS, PL, BET, TEM, HRTEM, FT-IR, EIS, XPS, and transient photocurrent measurements. The TiO2 QDs/BiOBr/BiOCl nanocomposite with 20% wt. of BiOBr and 30% wt. of BiOCl displayed superior photoability in the degradation of methylene blue, rhodamine B, and fuchsine, which was almost 34.5, 176, and 78.7-times larger than TiO2 and 27.8, 13.5, and 51.5-folds greater than TiO2 QDs, respectively. The results show that the construction of intimate n-p-p heterojunctions between BiOBr, TiO2 QDs, and BiOCl counterparts leads to enhanced visible-light harvesting and improved charge separation, resulted efficiently increased photocatalytic activity. The trapping results proved that h+, •O2−, and OH• species have considerable effects on the degradation reaction. We think that the improved efficiency of the ternary TiO2 QDS/BiOBr/BiOCl photocatalyst is a splendid alternative for the removal of toxic contaminants from wastewater. 相似文献
4.
采用简单的一步水热合成法,在含有模板剂、铝盐、膨胀石墨和硅源的水溶液中,利用铝盐水解后所产生的弱酸性环境,直接制备出介孔SiO_2/膨胀石墨复合材料,考察了铝盐的添加量对所得复合材料结构和性能的影响。采用XRD、N_2吸附和SEM对介孔SiO_2/膨胀石墨复合材料的结构和形貌进行了表征。以亚甲基蓝为目标污染物分子,系统评价了复合材料的吸附性能。结果表明,合成时铝盐的添加量在很大范围内变化(r_(Al/Si)=0.25~2.0,体系pH值为3.1~2.3)均可获得具有较大比表面积和孔体积的介孔SiO_2/膨胀石墨复合材料,且介孔SiO_2以多层膜的形式生长在膨胀石墨碳层上;当r_(Al/Si)=0.25、0.5、1.0时,复合材料孔道有序规整;当rAl/Si=1.0、2.0时,复合材料中介孔孔道规整性下降。介孔SiO_2/膨胀石墨复合材料吸附亚甲基蓝的饱和吸附量在52~55mg·g~(-1)左右,吸附行为主要符合Langmuir方程和伪二级动力学模型。 相似文献
5.
Ranjana Prakash Rayees Ahmad Rather Manpreet Kaur 《Particulate Science and Technology》2018,36(2):212-216
Carboxylic acids are industrially important and specifically used for the manufacturing of soaps and detergents and for various other chemical processes. As a result, wastewater derived from such industries generally contains significant amounts of these acids, posing threats to aquatic life, and thus needing detoxification by suitable treatment methods. In the present work, the degradation of different aliphatic carboxylic acids by bare and Ag-loaded TiO2 under UV light irradiation was investigated. The acids were photo-decomposed to CO2 with a linear decrease in the respective concentrations as a function of chain length/carbon atoms (C1-C8) and irradiation time. Small carboxylic acids, i.e., formic, acetic and propionic acid, exhibited faster rates of degradation than longer ones, i.e., butanoic, valeric and ethyl hexanoic acid; Ag loading did not significantly improve the TiO2 photocatalytic activity. 相似文献
6.
《Advanced Powder Technology》2022,33(12):103859
Constructing heterojunction provides a promising tactic to improve the photocatalytic efficiency of catalysts. In this paper, hierarchical FeIn2S4/BiOBr heterostructure photocatalysts were prepared by facile two step methods and applied to effectively remove ciprofloxacin (CIP) and tetracycline (TC) under visible light. Compared to single catalyst, FeIn2S4/BiOBr hybrids display significantly improved photocatalytic activity. Among the series, 6 wt% FeIn2S4/BiOBr shows the optimal photocatalytic performance, where the degradation efficiencies of TC and CIP are 3.15 and 2.88 times greater than pure BiOBr, respectively. Such an improvement could arise from the S-scheme heterojunctions and unique hierarchical structures, which brings stronger light absorption, higher photoexcited charge separation efficiency and superior redox ability. Furthermore, 6 wt% FeIn2S4/BiOBr composite exhibits excellent stability and reusability. Radical capture experiments and EPR analyses uncover that O2–, h+ and OH are primarily reactive substances during photocatalytic removal of TC. The products of TC were detected by LC-MS analyses and possible decomposition paths are proposed. Eventually, a possible photodegradation mechanism over FeIn2S4/BiOBr S-scheme heterojunction is proposed. These findings supply new perspective for the simple synthesis of S-scheme photocatalysts with promising applications in environment remediation. 相似文献
7.
8.
Jianguo Li Longfei Hui Wangle Zhang Jian Lu Yanjing Yang Hao Feng 《Advanced Powder Technology》2021,32(3):728-739
A high surface area photo-catalytic composite material is synthesized by depositing thin films of titanium dioxide (TiO2) on activated carbon (AC) particles using atomic layer deposition (ALD). A rotary ALD reactor is developed for scalable fabrication of powder and grams of the catalyst is prepared in each batch. The processes of TiO2 ALD are monitored by mass spectrometry. Saturated ALD surface reactions are confirmed so that the entire surface of the AC support is covered by conformal coatings of TiO2. For composites fabricated by 3 or more ALD cycles of TiO2, the amorphous oxide layers can be converted to crystalline films by high temperature annealing. The as-prepared TiO2/AC composites are highly reactive in photo-catalyzed degradation of methyl orange. The excellent catalytic performance is attributed to the abundant and uniformly dispersed active phase, formation of very active ultra small (<5 nm) TiO2 crystals, and easy accessibility of the active sites. 相似文献
9.
《Advanced Powder Technology》2020,31(6):2327-2336
Herein, we prepare novel composites of α-Fe2O3/BiOI photocatalysts by one step microwave hydrothermal process. The SEM and TEM characterization results suggest microsphere shaped of BiOI with α-Fe2O3 nanoparticles decorated on the surface of BiOI nanosheets. According to the results of UV-vis DRS measurements, α-Fe2O3/BiOI exhibited more visible light adsorption. The composite exhibited the highest photoactivity for decomposition of methyl orange (MO) and antibiotics tetracycline (Tc) superior to that of the pure α-Fe2O3 and BiOI in the visible light. The degradation rate constant is 2.3 times and 2.0 times higher than that of pure BiOI and α-Fe2O3 under the same conditions for degradation MO and Tc respectively. The photodegradation performances of α-Fe2O3/BiOI composites were also investigated under different light sources irradiation. Based on the analysis results of radical capture experiment, the enhanced photocatalytic efficiency of α-Fe2O3/BiOI photocatalyst can be mainly indentified to be the dominant active species of hole (h+) and superoxide radical(O2−). 相似文献
10.
采用原位生长法,室温下将TiO2和MIL-100(Fe)负载在锦纶(PA)上,制备了TiO2/MIL-100(Fe)/PA复合材料。采用FTIR、SEM、EDS、XRD、TG等表征手段,证明TiO2/MIL-100(Fe)成功负载到PA上。探讨了光源、H2O2、染料结构、NaCl、pH值对TiO2/MIL-100(Fe)/PA复合材料脱色效果的影响。结果表明:在黑暗条件下,复合材料对活性黑KN-B染料有吸附脱色的效果。在模拟太阳光下加入H2O2,复合材料对不同的活性染料脱色率不同,对活性黑KN-B脱色率最高,活性艳红M-3BE次之,对活性艳蓝KN-R脱色率最差。染液中加入NaCl都会降低染料的脱色率,但影响不大。染液的pH值增加,染料的脱色率下降。 相似文献
11.
采用溶胶-凝胶法制备了WO3/TiO2纳米复合催化剂,通过XRD、IR、UVDRS技术对材料的表面性质与构造、光响应性能进行了表征,并研究了该催化剂作用下光催化甲烷和水生成甲醇的反应性能;考察了煅烧温度、WO3掺杂量对光催化活性的影响,并研究了反应条件对甲醇产量的影响。结果表明:掺入WO3使TiO2光催化活性提高,扩大了光激发波长范围;催化剂煅烧温度为600℃、WO3摩尔分数为3%时,光催化性能最佳;在紫外光照射下,光激发WO3/TiO2表面产生光生空穴,催化甲烷转化为甲醇,甲烷转化率为16.2%,对甲醇的选择性达到76%。 相似文献
12.
《Advanced Powder Technology》2020,31(7):2890-2900
Photocatalysis is an attractive and green strategy for organic pollutant removal. The development of alternative and effective photocatalysts has attracted great attention. Herein, we rationally engineer an alternative rich-oxygen vacancies (OVs) Bi2WO6/In2O3 composite photocatalyst via integrating the calcination and hydrothermal method for removing organic dyes (rhodamine B). Thanks to the synergistic effect of OVs and heterojunction structure, the 80 wt% Bi2WO6/In2O3 (BiIn80) displays enhanced photocatalytic degradation effect. The degradation rate of BiIn80 is up to 97.3% under light irradiation within 120 min and the reaction rate constant k value (0.03221 min−1) is about 15-fold and 4.17-fold as high as those of In2O3 (0.00203 min−1) and Bi2WO6 (0.00772 min−1), respectively. The heterostructure of Bi2WO6/In2O3 can extend the lifespan of the photogenerated charge carriers. Moreover, the density functional theory (DFT) calculations reveal that the OVs in Bi2WO6/In2O3 can boost visible light absorbability by decreasing band gap value and serve as the extra electron transfer channels to enhance the separation efficiency of photogenerated electron-hole pairs. This study not only provides an alternative route for fabricating highly efficient heterojunction photocatalysts, but also obtains better understanding of the synergistic effect of OVs and heterojunction on enhancing the photocatalytic performance. 相似文献