首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microwave‐assisted synthesis and processing represents a growing field in materials research and successfully entered the field of carbon nanomaterials during the last decade. Due to the strong interaction of carbon materials with microwave radiation, fast heating rates and localized heating can be achieved. These features enable the acceleration of reaction processes, as well as the formation of nanostructures with special morphologies. A comprehensive overview is provided here on the possibilities and achievements in the field of carbon‐nanomaterial research when using microwave‐based heating approaches. This includes the synthesis and processing of carbon nanotubes and fibers, graphene materials, carbon nanoparticles, and capsules, as well as porous carbon materials. Additionally, the principles of microwave‐heating, in particular of carbon materials, are introduced and important issues, i.e., safety and reproducibility, are discussed.  相似文献   

2.
In this work, carbon nanotubes and minor amount of Fe/C core-shell structure nanoparticles were simultaneously synthesized by catalytic pyrolysis of ferrocene. Through high-resolution TEM observation and ED characterization, the results showed that the well-crystallized iron nanoparticles could catalyze the formation of carbon nanotubes, while the amorphous iron nanoparticles could not catalyze the formation of carbon nanotubes but form the Fe/C core-shell nanoparticles.  相似文献   

3.
Pyrolysis enables to recover metals and organic feedstock from waste conglomerates such as: automotive shredder residue (ASR). ASR as well as its pyrolysis solid products, is a morphologically and chemically varied mixture, containing mineral materials, including hazardous heavy metals. The aim of the work is to generate fundamental knowledge on the conversion of the organic residues of the solid products after ASR's microwave pyrolysis, treated at various temperatures and with two different types of gasifying agent: pure steam or 3% (v/v) of oxygen. The research is conducted using a lab-scale, plug-flow gasifier, with an integrated scale for analysing mass loss changes over time of experiment, serving as macro TG at 950, 850 and 760 °C. The reaction rate of char decomposition was investigated, based on carbon conversion during gasification and pyrolysis stage. It was found in both fractions that char conversion rate decreases with the rise of external gas temperature, regardless of the gasifying agent. No significant differences between the reaction rates undergoing with steam and oxygen for char decomposition has been observed. This abnormal char behaviour might have been caused by the inhibiting effects of ash, especially alkali metals on char activity or due to deformation of char structure during microwave heating.  相似文献   

4.
Microwave plasma-enhanced chemical vapor deposition (MW-PECVD) has been employed to synthesize carbon nanostructures by using Fe (or Co, Ni)/γ-Al2O3 as catalysts and a mixture of benzene, hydrogen, and argon as precursors. By regulating the types of catalyst, the microwave incident power, the ratio and flux of the precursors, many morphologies such as ordinary geometric, helix-shaped, and planar spiral carbon nanotubes with aspect ratios of 100–1000 have been observed. Furthermore, two novel nanostructures, which are probably the missing link between onion-like carbon particles and nanotubes, have also been obtained. The striking feature of this new approach is the low synthesis temperature (<520°C) due to the non-equilibrium characteristic of microwave plasma operated at low pressure, which is crucial for some fascinating applications.  相似文献   

5.
A composite material of zinc oxide and carbon nanotubes were successfully synthesized via a sol process using zinc acetate dihydrate and treated multi-wall carbon nanotubes under microwave irradiation. The morphology, microstructure and chemical bonding of as-obtained composites were well characterized using X-ray diffraction, scanning electron microscope, transmission electron microscope, and Fourier transform infrared spectroscopy. Zinc oxide nanoparticles were dispersively coated on the surface of carbon nanotube when the precursor was dried under microwave irradiation without post-annealing. X-ray diffraction results obviously showed the mixture of two phases of carbon nanotube and wurzite zinc oxide whose size is approximately 15 nm. The formation of zinc oxide nanoparticles on carbon nanotube surface in the composite prepared by microwave heating is much better than the composite heated by conventional annealing. Fourier transform infrared spectroscopic results suggest that carboxylic groups and uniform heating by microwave heating could play key roles on the nucleation of zinc oxide on carbon nanotube surface.  相似文献   

6.
So far carbon nanotubes grown from the method most common method at present, that is, pyrolysis of ferrocene, invariably contains Fe inclusion. In addition, they are generally grown in random configurations. In the present investigations CNTs without Fe inclusion and in aligned configurations have been prepared by the pyrolysis of ferrocene (C10H10Fe) as well as pyrolysis of ferrocene in the presence of ethylene (C2H4). This has been achieved through optimization of growth parameters, for example, heating rate of ferrocene, pyrolysis temperature, and flow rates of carrier gas argon (Ar) and ethylene (C2H4). The as-synthesized samples have been characterized by transmission and scanning electron microscopic techniques. The optimum results relating to synthesis of carbon nanotubes without Fe inclusion and in aligned configurations have been obtained at 1000 degrees C pyrolysis temperature under flow rates of Ar of approximately 1000 sccm and of C2H4 of approximately 100 sccm. These carbon nanotubes have been found to have an outer diameter between approximately 20 and 60 nm and lengths between approximately 15 and 20 microns.  相似文献   

7.
Synthesis of valuable multi-walled carbon nanotubes (MWCNTs) by thermal pyrolysis of low-density polyethylene (LDPE) waste was investigated via a two-stage process. The first stage was the thermal pyrolysis of LDPE to gaseous hydrocarbons, and the second stage was the catalytic decomposition of the pyrolysis gases over Ni-Mo/Al2O3 catalysts. Two catalysts with the compositions of 5.2%Ni-10.96%Mo/Al2O3 and 10%Ni-9.5%Mo/Al2O3 were tested for carbon nanotubes (CNTs) formation. The catalyst containing 10%Ni showed better activity in terms of CNTs production. Accordingly, the impact of either pyrolysis or decomposition temperatures was investigated using the 10%Ni-9.5%Mo/Al2O3 catalyst. TEM, XRD, Raman spectroscopy, TGA, TPR, and BET analysis tools were used to characterize the fresh catalysts as well as the obtained carbon nanomaterials. TEM images proved that MWCNTs with various morphological structures were obtained at all pyrolysis and decomposition temperatures. Moreover, cup-stacked carbon nanotubes (CS-CNTs) were observed at the decomposition temperature of 600°C. MWCNTs with the best quality were produced at decomposition temperature of 750°C. The optimum pyrolysis and decomposition temperatures in terms of CNTs production were at 700 and 650°C, respectively.  相似文献   

8.
A SiC-based material was synthesized from polyvinylsilane (PVS) by pyrolysis at 1400 K in Ar gas atmosphere. In the ceramization process of PVS, several kinds of gases such as hydrogen, silanes, and hydrocarbons were evolved in the temperature range from 500 to 800 K. The total ceramic yield from PVS was about 36%. PVS was heat-treated using several temperature programmes by reflux heat treatment with a view to increase the ceramic yield. The total ceramic yield increased to 59% by the reflux heat treatment at 600 K. The apparent SiC crystallite size and the atomic ratio of carbon to silicon (C/Si) of the SiC-based material obtained by pyrolysis at 1400 K were almost the same for the PVS reflux-treated and the PVS not heat-treated; an apparent SiC crystallite size of about 2.4 nm, and C/Si of about 1.5.  相似文献   

9.
Lai C  Guo Q  Wu XF  Reneker DH  Hou H 《Nanotechnology》2008,19(19):195303
This paper studies the mechanism of the formation of carbon nanostructures on carbon nanofibers with Pd nanoparticles by using different carbon sources. The carbon nanofibers with Pd nanoparticles were produced by carbonizing electrospun polyacrylonitrile (PAN) nanofibers including Pd(Ac)(2). Such PAN-based carbon nanofibers were then used as substrates to grow hierarchical carbon nanostructures. Toluene, pyridine and chlorobenzine were employed as carbon sources for the carbon nanostructures. With the Pd nanoparticles embedded in the carbonized PAN nanofibers acting as catalysts, molecules of toluene, pyridine or chlorobenzine were decomposed into carbon species which were dissolved into the Pd nanoparticles and consequently grew into straight carbon nanotubes, Y-shaped carbon nanotubes or carbon nano-ribbons on the carbon nanofiber substrates. X-ray diffraction analysis and transmission electron microscopy (TEM) were utilized to capture the mechanism of formation of Pd nanoparticles, regular carbon nanotubes, Y-shaped carbon nanotubes and carbon nano-ribbons. It was observed that the Y-shaped carbon nanotubes and carbon nano-ribbons were formed on carbonized PAN nanofibers containing Pd-nanoparticle catalyst, and the carbon sources played a crucial role in the formation of different hierarchical carbon nanostructures.  相似文献   

10.
Mesoporous silica films were used as host for metal-based (Me = Fe, Co, Ni) nanoparticles via wet impregnation at pH = 5. A hydrogen ion beam was used to reduce the metallic oxide and hydroxides, previously detected by X-ray photoelectron spectroscopy, in metals. Chemical vapor deposition processes at three different conditions varying the acetylene-nitrogen proportion were performed on the mesoporous films decorated by different metal-based nanoparticles. The grown carbon nanostructures were characterized by high-resolution transmission electron microscopy and scanning electron microscopy. The ability to grow carbon nanostructures decreases in the following order: Fe > Co > Ni. When pure acetylene is used, iron allows to form graphene sheets around the metal catalyst like carbon nanocapsules, whereas cobalt allows to form structures that seem to be carbon nanotubes. Nitrogen leads to control the size and shape of carbon nanocapsules for iron catalyst and avoid the growth of such carbon nanotube-like structures for cobalt catalyst.  相似文献   

11.
The paper presents the results of competitive catalysis investigation of the carbon nanotube growth in situ of the partial oxidation process of methane. The competition between Ni and Fe results in suppression of Ni catalytic activity and the growth of Fe-capped carbon nanotubes. The discrimination is so strong that iron is segregated from Ni-Fe based stainless steel alloy leaving characteristic Ni-enriched corrosion caverns. The process strongly depends on temperature. Depending on particular catalyst bed composition, the nanotubes of various morphology may occur. In particular, the use of perovskite-type catalyst leads to formation of “olive-branch”-like peculiar carbon nanostructures.  相似文献   

12.
不同原料气催化热解法制备碳纳米管的研究   总被引:10,自引:8,他引:2  
李颖  李轩科  刘朗 《新型炭材料》2004,19(4):298-302
以CH4和C3H6为原料气,Ni-SiO2为催化剂,采用催化裂解法制备了碳纳米管。考察了两种原料气在单位催化剂上的产量与碳纳米管的转化率,并运用TEM、XRD和Raman对所获碳纳米管的形貌结构性能进行了分析。结果表明:以CH4为原料气时单位催化剂上的产率虽低而转化率却较高。说明当C1H6发生分解时,分解出来的碳只有少部分转化成了碳纳米管,而大部分为副产物;当CH4分解时,副反应较少,因此转化率较高:同时微观结构的分析也表明:采用CH4为原料气时,产物的形貌比较均一,其有序程度较高,碳纳米管的结构缺陷也较少。  相似文献   

13.
Polymer-based composites were prepared using different concentrations of nanostructured carbons (NCs), produced by catalytic decomposition of methane (CDM). Four carbonaceous nanostructures were produced using different catalysts (with Ni and Fe as active phases) in a rotary bed reactor capable of producing up to 20 g of carbon per hour. The effect of nanostructured carbon on the thermal and electrical behaviour of epoxy-based composites is studied. An increase in the thermal stability and the decrease of electrical resistivity were observed for the composites at carbon contents as low as 1 wt%. The highest reduction of the electrical resistivity was obtained using multi-walled carbon nanotubes obtained with the Fe based catalysts. This effect could be related to the high degree of structural order of these materials. The results were compared with those obtained using a commercial carbon nanofibre, showing that the use of carbon nanostructures from CDM can be a valid alternative to the commercial nanofibres.  相似文献   

14.
Carbon nanostructures have been synthesized using the chemical vapor deposition technique (CVD) on different catalysts, using ethylene, acetylene, or methane as the hydrocarbons. Morphological characterizations obtained using a scanning electron microscope (SEM) showed that the reaction products are carbon nanofibers (CNF) with an outer diameter that depends on the reaction conditions and nature of the reactants. Hydrogen uptake measurements, performed volumetrically in a Sievert-type installation, showed the quantity of desorbed hydrogen (for pressure intervals ranging from 1 to 100 bars) depends on the synthesis conditions and the treatment preceding the hydrogen absorption process. For carbon nanotubes that were preparedaccording to literature guidelines and obtained from ethylene on a Ni:Cu catalyst, the amounts of absorbed hydrogen were less than 1% by weight. carbon nanostructures chemical vapor deposition hydrogen absorption SEM  相似文献   

15.
Recently the site-density control of carbon nanotubes (CNTs) has attracted much attention as this has become critical for its many applications. To obtain an ordered array of catalyst nanoparticles with good monodispersity nanosphere lithography (NSL) is used. These nanoparticles are tested as catalyst sites in hot-wire chemical vapor deposition (HWCVD) of carbon nanostructures. Aside from using NSL also nickel (Ni) nano-islands are made by thermal annealing of a thin Ni film and tested as catalyst sites. Multiwall CNTs, isolated carbon nanofibres, and other nanostructures have been deposited using HWCVD. Tungsten filaments held at ~ 2000 °C are used to decompose a mixture of ammonia, methane and hydrogen. The structures have been characterized with Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy, Raman spectroscopy and Rutherford Backscattering Spectroscopy.  相似文献   

16.
Soon after the bulk production of carbon nanotubes was achieved, using arc discharge techniques, other methods involving gas phase processes (i.e. combustion ami pyrolysis of hydrocarbons, laser irradiation of graphite) were developed. Nowadays, it is possible to generate nanotubes and fullerene-related nanostructures from layered materials such as WS2, MoS2, BN, BC2N and BC3. Recently, a new technique, involving electrolysis of graphite electrodes in molten ionic salts, has been developed which may open up new synthetic routes to nanotubes in the liquid phase. In this paper, possible growth mechanisms for such processes are reviewed and other routes to nanstructures are discussed.  相似文献   

17.
Microwave irradiation was shown to be an effective energy source for the rapid decomposition of organic metal salts (such as silver acetate) in a solid mixture with various carbon and noncarbon substrates under completely solvent-free conditions. The rapid and local Joule heating of microwave absorbing substrates (i.e., carbon-based) resulted in the instantaneous formation of metal and metal oxide nanoparticles on the substrate surfaces within seconds of microwave exposure. Other less absorbing substrates (such as hexagonal boron nitride) required longer exposure times for the salt decomposition to occur. Details of the effects of microwave reaction time, temperature, power, and other experimental parameters were investigated and discussed. The solvent-free microwave method was shown to be widely applicable to various organic metal salts with different substrates including single- and multiwalled carbon nanotubes, graphene, expanded graphite, hexagonal boron nitride and silica-alumina particles, forming substrate-supported metal (e.g., Ag, Au, Co, Ni, Pd, Pt) or metal oxide (e.g., Fe?O?, MnO, TiO?) nanoparticles in high yields within short duration of microwave irradiation. The method was also successfully applied to large structural substrates such as nanotube yarns, further suggesting its application potential and versatility. To demonstrate one potential application, we successfully used both carbon nanotube powder and yarn samples decorated with Ag nanoparticles prepared via the above method to improve data acquisition in surface enhanced Raman spectroscopy.  相似文献   

18.
Various carbon nanostructures (CNs) have been prepared by a simple deposition technique based on the pyrolysis of a new carbon source material tetrahydrofuran (THF) mixed with ferrocene using quartz tube reactor in the temperature range 700–1100 °C. A detailed study of how the synthesis parameter such as growth temperature affects the morphology of the carbon nanostructures is presented. The obtained CNs are investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), electron dispersive scattering (EDS), thermogravimetry analysis (TGA), Raman and transmission electron microscope (TEM). It is observed that at 700 °C, normal CNTs are formed. Iron filled multi-walled carbon nanotubes (MWCNTs) and carbon nanoribbons (CNRs) are formed at 950 °C. Magnetic characterization of iron filled MWCNTs and CNRs studied at 300 K by superconducting quantum interference device (SQUID) reveals that these nanostructures have an enhanced coercivity (Hc = 1049 Oe) higher than that of bulk Fe. The large shape anisotropy of MWCNTs, which act on the encapsulated material (Fe), is attributed for the contribution of the higher coercivity. Coiled carbon nanotubes (CCNTs) were obtained as main products in large quantities at temperature 1100 °C.  相似文献   

19.
Carbon micro‐/nanocages have attracted great attention owing to their wide potential applications. Herein, a self‐templated strategy is presented for the synthesis of a hydrangea‐like superstructure of open carbon cages through morphology‐controlled thermal transformation of core@shell metal–organic frameworks (MOFs). Direct pyrolysis of core@shell zinc (Zn)@cobalt (Co)‐MOFs produces well‐defined open‐wall nitrogen‐doped carbon cages. By introducing guest iron (Fe) ions into the core@shell MOF precursor, the open carbon cages are self‐assembled into a hydrangea‐like 3D superstructure interconnected by carbon nanotubes, which are grown in situ on the Fe–Co alloy nanoparticles formed during the pyrolysis of Fe‐introduced Zn@Co‐MOFs. Taking advantage of such hierarchically porous superstructures with excellent accessibility, synergetic effects between the Fe and the Co, and the presence of catalytically active sites of both metal nanoparticles and metal–Nx species, this superstructure of open carbon cages exhibits efficient bifunctional catalysis for both oxygen evolution reaction and oxygen reduction reaction, achieving a great performance in Zn–air batteries.  相似文献   

20.
Vertically-aligned carbon nanotubes(CNTs) with multi-walled structure were successfully grown on a Fe-deposited Si substrate at low temperature below 330°C by using the microwave plasma chemical vapor deposition of methane and carbon dioxide gas mixture. This is apparently different from the conventional reaction in gas mixtures of hydrogen and methane, hydrogen and acetylene, and hydrogen and benzene ... etc. High quality carbon nanotubes were grown at lower temperature with CO2 and CH4 gas mixture than those used by the previous. After deposition, the microstructure morphology of carbon nanotubes was observed with scanning electron microscope and high-resolution transmission electron microscope. The characteristics of carbon nanotubes were analyzed by laser Raman spectroscopy. The results showed the variation of the flow rate ratio of CH4/CO2 from 28.5 sccm/30 sccm to 30/30 sccm and the DC bias voltage from –150 V to –200 V, at 300 W microwave power, 1.3–2.0 kPa range of total gas pressure, and substrate temperatures between 300°C and 350°C. Vertically aligned carbon nanotubes with the diameter of about 15 nm and multi-walled structure were illustrated by SEM and HRTEM. However, the highest yield of carbon nanotubes of about 50% was obtained at low temperature below 330°C by MPCVD for the CH4/CO2 gas mixture with properly controlled parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号