首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatigue crack initiation and S-N fatigue behaviour of hipped model Al7Si-Sr and Al0.7Si piston alloys have been investigated after overaging at 260 °C for 100 h to provide a practical simulation of in-service conditions. The results show that hipping did not affect the S-N behaviour of Al7Si-Sr. This is attributed to the lack of significant change in porosity distribution in this alloy because of its low porosity levels even in the unhipped state. However, hipping profoundly improved the fatigue performance of alloy Al0.7Si due to the significant reduction in porosity. In this investigation, it was observed that porosity was rendered impotent as a fatigue crack initiator in both hipped alloys. Instead, fatigue cracks were observed to originate mainly from intermetallic particles (particularly the Al9FeNi phase) in both alloys and sometimes from oxide particles in Al0.7Si alloy. Fatigue cracking was also frequently observed at intermetallic clusters in hipped Al0.7Si. The observed scatter in fatigue life is discussed in terms of the size of fatigue crack initiating particles and the overall particle size distribution which follows a power law distribution function.  相似文献   

2.
林宗德  张云鹏 《功能材料》2020,(1):1171-1175,1188
首先采用球磨法制备了不同粒度的Ni-Mn-Ga-Co合金粉末,然后通过3D打印技术成功制备了泡沫结构的多孔Ni-Mn-Ga-Co磁性形状记忆合金。利用SEM、DSC和XRD等研究了合金的微观组织特征、物相结构、相变特性和相关的磁性行为。结果表明,球磨后经过分筛得到的不同粒径尺寸的合金粉末均为不规则形状。Ni-Mn-Ga-Co合金粉末在室温下为非调制四方马氏体结构,其特征峰十分明显。Ni-Mn-Ga-Co合金的DSC曲线上出现宽峰相变,添加Co元素对马氏体转变温度开始值(Ms)基本没有影响,但其居里温度(Tc)有显著的提高。采用粒径为50~100μm的合金粉末烧结制备的磁性合金,饱和磁化强度最大可达68 Am^2/kg。合金粉末粒径越小,烧结制备的多孔Ni-Mn-Ga-Co磁性形状记忆合金致密度越高。当合金粉末粒径<50μm时,致密度可达90%;当合金粉末粒径为50~100μm时,致密度仅为75%。相较于粒径较小的合金粉末,粒径较大的合金粉末制备的磁性合金磁感生应变能力更高,这是由于泡沫结构能够有效减少内部和外部的约束,从而有利于提高磁场诱导应变。  相似文献   

3.
Owing to the physical properties of copper and its alloys it is challenging to achieve good surface quality and low porosity by the widely used laser-based additive manufacturing processes. This paper deals with the role of alloy composition, powder size and process parameters in additive manufacturing with laser beam melting machine (with power up to 100 W). Test parts were produced in pure copper and CuNiSi(Cr) alloys. The porosity was investigated as a function of different process parameters and powder size ranges. The effects of the alloy physical properties (reflectivity, thermal conductivity, melting range and surface tension) are discussed. Moreover, the effect of thermal treatment on the properties of CuNiSi parts was assessed in conventional two-step heat treatments.  相似文献   

4.
镁合金作为最轻的金属结构材料,在汽车制造、生物医疗等领域具有极大的应用潜力。激光选区熔化成形镁合金具有高效的制备性能、良好的成分均匀性、优异的力学性能和耐腐蚀性能,因此激光选区熔化成为一种重要的镁合金制备和改性方法。对近几年激光选区熔化镁合金的研究进展进行了综述,从激光工艺参数(激光类型、体能量密度、激光功率、扫描速度、扫描模式、层厚、扫描间距、气氛控制与进粉速度)和粉体状态(粉末形状、粒径分布、粉末对激光束能量吸收率、粉末化学成分)2个方面讨论了该工艺的关键技术;按照纯镁、非稀土镁合金体系、稀土镁合金体系的分类,对激光选区熔化成形镁及镁合金的致密度与微观结构、力学性能与耐腐蚀性能进行了总结;分析了工艺参数与合金成分两方面对该工艺成形镁合金缺陷的影响。为减少激光选区熔化成形镁合金缺陷、均匀化晶粒、溶解硬脆二次相或析出强化相进而改善合金的结构与性能,许多研究对激光选区熔化成形镁合金进行了热等静压、固溶热处理和时效热处理,总结了上述处理方式对AZ体系、WE体系与Mg-Gd体系镁合金的改善效果。最后展望了激光选区熔化成形镁及镁合金在各领域的应用前景与未来可以进行研究的方向。  相似文献   

5.
《Advanced Powder Technology》2019,30(10):2330-2337
In the present research, the characteristics and atomization behavior of Ti-6Al-4V powders produced by plasma rotating electrode process (PREP) with different rotation speeds were investigated. Three kinds of particles in the as-PREPed powders are observed: spherical particles, satellite particles and irregular particles. The mean particle size of the PREP powder decreases and its distribution becomes narrower gradually with increasing rotation speed. PREP powder at higher rotation speed demonstrates lower fractions of both satellite particles and irregular particles. By observing the residual electrode tip, it is considered that the irregular particles with corner or flat shape are possibly caused by the tearing of liquid film under the action of centrifugal force and shear force during the atomization process.  相似文献   

6.
Powder packing behavior plays an important role in determining sintering ability of powder and the resultant performance of materials. In this study, a novel powder packing theory with bimodal particle size distribution is proposed by considering the loosening effect, wall effect and wedging effect. This theory is applied in PM nickel base superalloy by using mixture of coarse particles and fine particles. Microstructures of alloy sintered by vacuum hot pressing (HP) are observed by optical microscope (OM) and electron backscatter diffraction (EBSD). The prediction result by this theory is in good agreement with the experimental results. The enhanced sintering ability of powder containing appropriate fractions of coarse particle and fine particle is ascribed to the filling of fine particles to the voids between coarse particles, which enhanced the density of sample after sintering. Tensile behavior and the fracture morphology of alloys with various particle distributions are analyzed in details, suggesting the higher reliability of the present theory.  相似文献   

7.
Titanium and its alloys are currently considered as one of the most important metallic materials used in the biomedical applications, due to their excellent mechanical properties and superior biocompatibility. In the present study, a new effective method for fabricating high porosity titanium alloy scaffolds was developed. Porous Ti-6Al-4V scaffolds are successfully fabricated with porosities ranging from 30% to 70% using spaceholder and powder sintering technique. Based on its acceptable properties, spherical carbamide particles with different diameters (0.56, 0.8, and 1mm) were used as the space-holder material in the present investigation. The Ti-6Al-4V scaffolds porosity is characterized by using scanning electron microscopy. The results show that the scaffolds spherical-shaped pores are depending on the shape, size and distribution of the space-holder particles. This investigation shows that the present new manufacturing technique is promising to fabricate a controlled high porosity and high purity Ti-6Al-4V scaffolds for hard tissue replacement.  相似文献   

8.
Spherical Ti-6Al-4V powder was produced by RF plasma spheroidization combined with mechanical alloying and spray granulation. Particle size distribution, morphology, specific surface area, apparent density, flowability, element distribution and content of alloy powders after each stage during the process were investigated. Results show that the obtained spheroidized Ti-6Al-4V alloy powder has dense structure, good sphericity and high spheroidization ratio (98%), moderate particle size (37.8 μm) with narrow distribution. It also has excellent flowability (33.2 s· (50 g)-1) and apparent density (2.53 g·cm?3). In addition, elements distribution in the spherical Ti-6Al-4V alloy powder is uniform and most of elements content of it is within the standard of Ti-6Al-4V alloy.  相似文献   

9.
刘建良  孙加林  徐茂  胡劲  施安  施鸿 《材料导报》2006,20(1):123-125
金属铝粉活性是制约单质铝发生水解反能的各种因素如雾化气体压力、转盘转速、金属熔体过热度等进行了实验研究.实验发现,雾化气体压力对雾化粉体粒度的影响呈倒抛物线关系,存在一个临界压力,当压力接近此值时雾化粉体达到最细;转盘转速越高,金属熔体过热度越大,活化粉体粒径越细.  相似文献   

10.
The surface morphology of five tableting excipients including unmilled dicalcium phosphate dihydrate (Di-Tab), microcrystalline cellulose (Avicel PH102), corn starch, croscarmellose sodium (Ac-di-sol), and sodium starch glycolate (Primojel) was studied using laser scattering particle size analysis and nitrogen adsorption surface area analysis. The surface area of particles disregarding porosity was obtained from the particle size distribution and the total area was obtained from the B.E.T. treatment of nitrogen adsorption results. The so-called Surface Irregularity Index (SII) was established to indicate surface roughness due to porosity. The SII value was consistent with the microscopic visualization of a powder sample. Furthermore, the nitrogen adsorption-desorption isotherm hysteresis which showed the evidence of porosity was also consistent with the index. The SII may be an alternative way to characterize the surface morphology of a solid powder.  相似文献   

11.
Low mechanical strength, especially at high temperatures, is the key problem that limit the application of FeCrAl alloys as the accident tolerance fuel (ATF) cladding materials. Dispersion strengthening by carbide nanoparticles is an effective way to improve mechanical properties at high temperatures. In this work, an ultrafine grained FeCrAl-0.6 wt.% ZrC alloys with excellent mechanical properties were fabricated successfully by mechanical milling and spark plasma sintering. The effect of milling speed on powder characteristics, microstructure and mechanical properties of FeCrAl alloys were investigated. The particle size of the powders increase significantly after milling at 400 rpm, while it has a lower oxygen content. Increasing the milling speed decreased the resultant grain size and improved relative density. Transmission electron microscope (TEM) demonstrated the nano ZrC particles uniformly distributed in the matrix at higher milling speed, which effectively promotes grain refinement and dispersion strengthening. The results of mechanical properties show that the tensile strength, percentage elongation and hardness of FeCrAl-0.6 wt.% ZrC alloys at room temperature (RT) reached up to 1.05 GPa, 349.86 HV and 12.1%, respectively, after milling at 400 rpm. It is worth noting that the FeCrAl-0.6 wt.% ZrC alloy also exhibited a good high-temperature strength more than 110 MPa at 800 ℃, which is about 55.4% and 24.7% higher than previously reported FeCrAl-0.5 wt.% ZrC and FeCrAl-1.0 wt.% ZrC alloys, but the plasticity is reduced. The results demonstrated that the excellent mechanical properties were not only attributed to the dispersion strengthen by nanosized ZrC, a good interface bonding between Fe matrix and nanosized ZrC, but also the ultra-fine grained structure induced by the milling process.  相似文献   

12.
The thermal conductivity and thermal diffusivity of hot- and cold-pressed Al–17Si–5Fe–3.5Cu–1.1Mg–0.6Zr (mass%) alloy powder compacts were investigated as a function of the porosity volume fraction. Samples with a very low degree of porosity were produced by hot-pressing air atomized alloy powder with a particle size of 45–100 m. The same powder was used to produce highly porous compacts by cold compaction using a manual press. The thermal diffusivity of the powder compacts was measured using a sinusoidal modulation photopyroelectric technique in a configuration that is similar to the laser flash method. The thermal diffusivity of the material decreases by a factor of about 13 with an increasing porosity of 25 vol% and a factor of about 300 at 60 vol % porosity. Since the calculated specific heat (weighted average of mass specific heat values of major alloy compounds) is much less porosity dependent, the porosity dependence of the thermal conductivity is similar to the thermal diffusivity and decreases exponentially with increasing porosity. Microstructural characterization of high porosity samples prepared by cold compaction indicated that the distribution of pores is not uniform over the cross-section. An interconnecting network of open and closed pores in the form of channels created pockets of porosity,clearpage 2.3pc which are largely responsible for a drastic reduction of thermal conductivity 4pc with increasing porosity.  相似文献   

13.
为了制备粒度小于10μm的超细清水营煤粉,采用球磨机对煤粉进行研磨,利用激光粒度仪对超细煤粉进行了粒度分析,得出球磨时间、球煤质量比、填充率、转速等主要因素与煤粉碎效果的关系,确立清水煤超细粉碎的最佳工艺条件。结果表明:采用湿磨方式,在球煤质量比为15∶1、填充率为0.45、转速为100 r/min的工艺条件下,经7 h研磨,清水营煤粉的粒度可达到2.596μm。  相似文献   

14.
The surface morphology of five tableting excipients including unmilled dicalcium phosphate dihydrate (Di-Tab), microcrystalline cellulose (Avicel PH102), corn starch, croscarmellose sodium (Ac-di-sol), and sodium starch glycolate (Primojel) was studied using laser scattering particle size analysis and nitrogen adsorption surface area analysis. The surface area of particles disregarding porosity was obtained from the particle size distribution and the total area was obtained from the B.E.T. treatment of nitrogen adsorption results. The so-called Surface Irregularity Index (SII) was established to indicate surface roughness due to porosity. The SII value was consistent with the microscopic visualization of a powder sample. Furthermore, the nitrogen adsorption-desorption isotherm hysteresis which showed the evidence of porosity was also consistent with the index. The SII may be an alternative way to characterize the surface morphology of a solid powder.  相似文献   

15.
旨在制备高品质Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn粉末,为后续粉末高温钛合金构件的制备奠定基础。首先采用真空自耗电弧熔炼(VAR)技术制备Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn合金铸锭,对铸锭进行化学成分检测,并分析其合金元素损耗、成分均匀性以及显微组织和物相组成。利用制得棒料,采用等离子旋转电极雾化法(PREP),选取不同转速制备得到钛合金粉末,将粉末筛分成不同粒度范围。研究了棒料转速与粉末理化性能间的关系。采用X射线衍射分析仪(XRD)、扫描电镜(SEM)、金相显微镜(OM)分别分析了粉末的物相组成、形貌和微观组织。研究表明:通过独特的压制电极设计,可制得成分均匀、元素损耗小的钛合金铸锭,且各合金元素含量满足国标的要求。铸锭微观组织为层片状结构,基体中存在少量大小不均的Ti5Si3硅化物相。PREP法制得的钛合金粉末呈正态分布,且球形度好,无空心球和卫星球。随着转速增加,小颗粒粉末占比增加,大颗粒粉末占比大幅度降低。粉末颗粒以胞状组织为主,存在少量的枝晶。合金粉末主要由α′马氏体相组成。相比合金铸锭,粉末中各合金元素略有损耗,O元素质量分数小于0.1%,有利于制得高性能的粉末钛合金。  相似文献   

16.
The mechanical alloying process was employed to produce C103 alloy with Nb-10% Hf-1% Ti (wt.%) composition using Nb, Hf and Ti powders. The mechanical alloying process was performed in an argon atmosphere in the chamber and bullets of tungsten carbide with a ball-to-powder weight ratio (BPR) of 20:1 at rotation speed of 200, 300 and 400 rpm for 2, 5 and 8 h. At rotation speeds of 200 and 300 rpm particle size decreased and became more spherical during MA. While increasing milling time at 400 rpm caused agglomeration of particles. XRD results showed that increasing milling time at a constant rotation speed has no considerable effect on reduction of crystallite size, but the lattice strain is strongly affected by it and increased obviously with further rotation speed. The results showed that the optimum milling time and rotation speed to attain Nb-10Hf-1Ti alloy powders with the least amount of contamination and appropriate morphology are 5 h and 300 rpm, respectively.  相似文献   

17.
为获得更好的防护+装饰双重效果,采用不同粒径(200,400,800,1 000,1 200目)的铜金粉,利用机械镀技术在钢铁基体表面制备了铜-锌复合镀层。采用称重法分析了镀层的致密度,采用贴滤纸法检验了镀层孔隙率,采用划线划格法分析了镀层的结合强度,采用全浸腐蚀法及电化学极化法分析了镀层的耐腐蚀性能。结果表明:不同粒径铜金粉制备的镀层均覆盖完整,随铜粉粒径减小,复合镀层孔隙分布减少;随着铜粉粒径的减小,镀层的致密度逐渐增加,当铜粉粒径为1 000目时,Cu-Zn镀层的致密度已大于金属锌的密度;随着铜粉粒径的减小,镀层的结合强度增加,当铜粉粒径为200目时镀层的结合强度较差,而铜粉粒径小于400目时镀层的结合强度明显提高;随着铜粉粒径的减小,镀层的全浸腐蚀速率逐渐减小,耐腐蚀性增强。  相似文献   

18.
利用凝胶注模工艺结合微波烧结的方法制备孔隙可控的多孔不锈钢,实验研究了凝胶注模参数、微波烧结参数、粉末形状和粉末粒径等因素对孔隙结构的影响.研究表明:体积固相含量达56%,明胶和海藻酸钠含量分别为1%和0.8%,混合液p H值为7时,浆料流动性好,干燥后的坯体强度较高;烧结温度达1 200℃,保温时间为30 min,孔隙形貌较好;原料的粉末形状因子越大,粒径越小,则多孔不锈钢的孔径和孔隙率越小,分布越均匀;采用粒径35~60μm,形状因子0.85~1.0的粉末,制备出的多孔不锈钢孔隙率为20%~35%、孔径为10~30μm,接近现有透气模具钢水平.通过选取不同粉末形状因子和粒径的粉末,以及合理的凝胶注模和微波烧结工艺参数,可以准确控制多孔不锈钢材料的孔隙率与平均孔径.  相似文献   

19.
聚丙烯/聚苯乙烯共混合金——I.相区分布研究   总被引:9,自引:0,他引:9  
在PP/PS熔融共混合金中引入一熔融指数与PP相同,质量接枝率为13.5%的PP-g-PS接枝共聚物。SEM和SALS分析结果表明,PP-g-PS改善了PP和PS相的相容性关明显使合金内分散相的相畴分布细化,体系更趋均匀。  相似文献   

20.
In this work, an attempt was made to correlate the Young’s modulus of SiC particle reinforced aluminum alloy composites, measured by resonant ultrasound method, to reinforcement spatial distribution. Composites were fabricated by extrusion of billets that were previously formed using cold pressing blend of matrix alloy powders and ceramic particles. It has been shown that more aggregated microstructures were generated with an increase in ceramic volume fraction (to 20%) and the matrix alloy powder mean particle size from 40 to 180 μm as well as with a decrease in the reinforcement particle size (3–14 μm). At the same time, ultrasonic wave velocity as well as Young’s modulus diminish with a decrease in SiC content and its particle size, and with increase in matrix alloy particle size. The analysis showed that it could be partly attributed to the higher amount of residual porosity in agglomerated structures. An addition decrease of elastic characteristics was attributed to the increasing influence of mechanically imperfect contacts that formed between ceramic particles in the more aggregated microstructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号