首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以偏钨酸铵、可溶钴盐、有机碳为原料,经喷雾转化、煅烧、低温还原碳化制备WC-Co复合粉。对前驱体、复合粉物相组成、WC晶粒度、微观形貌、平均粒度及分布进行研究。结果表明:复合粉由WC和Co两相组成,WC晶粒度约为60 nm;前驱体粉末呈空壳球形结构,部分颗粒破裂;经煅烧后,形貌未发生明显变化;再经还原碳化处理,颗粒表面产生大量孔隙,形貌与前驱体相似,具有很好的形貌结构遗传特性;复合粉平均粒度比前驱体略有减小且粒度分布更窄;溶液浓度、给料速度越大,离心转速越小,则平均粒度越大;进气温度对粒度影响很小。  相似文献   

2.
In order to improve the process of co-reduction of oxide powder, a new thermo-mechanical method was designed to produce high-dispersed W–Cu composite powder by high temperature oxidation, short time high-energy milling and reduction. The properties of W–Cu composite powder are analyzed in terms of oxygen contents, BET specific surface (BET-S), particle size distributions, morphology of final powder and their sintering behaviors. The results show that the oxygen content of W–Cu composite powder decreases with the increase of milling time, while the BET-S of final powder increases with the milling time. The distributions of final powder are more uniform after reduction at 630 °C than at 700 °C. After milling of the oxide powder for about 3–10 h, W–Cu composite powder with very low oxygen content can be achieved at the reduction temperature of 630 °C owning to the increasing of BET-S of W–Cu oxide powder. The particle size of W–Cu powder after reduction is lower than 0.5 μm and smaller than that reduced at 700 °C. After sintering at 1200 °C for 60 min, the relative density and thermal conductivity of final products (W–20Cu) can attain 99.5% and 210 W m−1 K−1 respectively.  相似文献   

3.
Al2O3–ZrO2 composites having nominal equal volume fraction of Al2O3 and ZrO2 were prepared from gel-precipitated powder, precipitated powder and washed precipitated powder. These different processing routes affected the crystallization temperature of the amorphous powder as well as the phase evolution of Al2O3 and ZrO2 during calcination. The agglomerate size was largest for gel-precipitated powder (30 μm) and it was smallest for washed precipitated powder (19 μm). While gel-precipitated powder produce hard agglomerated powder (Pj = 110 MPa), washed precipitated powder produce soft agglomerates with low agglomeration strength (Pj = 70 MPa). Thus, washed precipitated powder could sinter to a high density at lower sintering temperature. The bending strength exhibits a semi logarithmic relationship with porosity. The hardness shows an increasing trend with sintering temperature.  相似文献   

4.
通过片状银粉与不同尺寸的超细银粉、纳米银粉或球形银粉混合,制备得到不同组合的低温固化银浆。将银浆固化在玻璃上,用扫描电镜(SEM)观测其截面形貌,并测定其电学性能与粘附性能。结果表明以片状银粉1#和类球形银粉4#搭接有助于提高粉体间的致密度,增加组合粉体的接触性能,获得较好的导电通路。在一定银含量范围内银粉有效含量的提高有利于获得较佳的电学导通性能。附着力测试表明经低温固化后聚酯材料对银粉和ITO基材均具有较强粘结力。  相似文献   

5.
Anisotropic powder was prepared with precursor (NdDy)-(FeCoNbCu)-B sintered magnets by hydrogen decrepitation, desorption, and subsequent annealing treatment. The hydrogen desorption was performed in magnetic fields of 0, 1, 3, and 5 T. The orientation of tetragonal phase grains of the powder was evaluated from the hysteresis loops measured by extraction magnetometer. Residual hydrogen content of the powder was evaluated by thermal-magnetic analysis. The powder with H cj, B r, and (BH)max of 1138 kA·m−1, 1.029 T, and 172.5 kJ·m−3, respectively, was achieved under the condition of the magnetic field of 3 T. Magnetic properties of the powder, especially, the remanence of the powder, are enhanced upon magnetic fields, which is due to better orientation of powder particles and less residual hydrogen in the powder resulted from the magnetic field during the hydrogen desorption process.  相似文献   

6.
对比研究了商业Fe-Si-B非晶(Fe-Si-BMG)粉末和目前广泛应用的零价铁粉(ZVI,Fe0)对水溶液中重金属离子Ni(II)的去除性能。动力学分析显示Fe-Si-BMG粉末对Ni(II)的去除效率约为Fe0粉的38倍。通过对2种粉末的表面形貌观察发现,与Fe0粉相比, Fe-Si-BMG粉末的表面产物层具有均匀、疏松的絮状物,更容易在搅拌过程中脱落。通过对Fe-Si-BMG粉末反应前后的表面化学成分分析发现:Fe-Si-BMG粉末通过吸附、还原、共沉淀作用去除水溶液中Ni(II),而Fe0粉主要通过吸附和共沉淀去除水溶液中的Ni(II)。  相似文献   

7.
Fe-based nanocrystalline powder sheets with dielectric TiO2 powder additives were investigated to improve the characteristics of electromagnetic (EM) wave absorption. The amorphous ribbons of Fe73Si16B7Nb3Cu1 (at.%) alloys were prepared by a planar flow casting (PFC) process, and the ribbons were pulverized using an attrition mill. Fe-based flake powder crystallized at 550°C for 1h was mixed with a nano-sized and a micro-sized TiO2 powder. The powder mixtures were then tape-cast with binders to become EM wave-absorbing sheets. The absorbing properties of the fabricated sheet sample, such as complex permittivity and permeability, were measured by a network analyzer. The properties of EM wave absorption improved with the increase of TiO2 powder in the mixture. The mixture with micro-sized TiO2 powder was a little more effective in causing power loss of EM waves than the mixture with nano-sized TiO2 powder.  相似文献   

8.
微米级钽粉(Ta)在生物医疗增材制造和其它制造领域具有广阔的应用前景。采用射频热等离子体对不规则钽粉进行球化处理以改善其流动性,对等离子体球化处理前后的钽粉进行了表征,并分析了球化过程中卫星粉的形成过程与机制。结果表明,经等离子体球化后的钽粉具有较为理想的球形度和光滑的表面,其霍尔流动性和表观密度分别从13.6 s·(50 g)-1提高到6.73 s·(50 g)-1和6.83 g·cm-3提升至9.06 g·cm-3,钽粉的球化率和球形度分别可约达95.2%和0.92;球化过程中卫星粉的形成主要是因液滴的碰撞所致,且随着送粉速度的增加,液滴碰撞概率增大,液滴的凝并使球形颗粒的粒径增大。  相似文献   

9.
董宁利  哈敏  郑伟  刘芳 《贵金属》2018,39(S1):92-96
通过使用XRD方法对热分解方法和碱体系还原得到的微米级银粉微观结构分析,结果表明微米级银粉都是纳米级的银晶体颗粒组成,且为面心立方结构;银粉晶粒表现为各向异性;制粉条件会影响银粉晶粒尺寸,升高热分解温度促使晶粒变小,机械整形和磨制促使晶粒变小;制备的银粉存在晶格畸变,均表现为晶格膨胀;制粉条件会影响晶面的布拉格衍射强度,且对不同晶面的影响程度存在差异。  相似文献   

10.
邓爱民  穆锐  苏昭玮 《表面技术》2021,50(3):232-238
目的 比较三种不同改性方法对负离子粉表面改性的效果.方法 以KH-570为改性剂,分别采用球磨法、溶剂回流法和干研磨法对超细负离子粉进行表面有机化改性.将改性后的负离子粉分散到丙烯酸酯单体中,通过悬浮聚合在负离子粉表面生成聚合物包覆层,并制备成包含负离子粉的聚合物微球体.通过7230G分光光度计对比粉体在甲基丙烯酸甲酯单体中的悬浮性能.采用扫描电镜观察粉体的形貌特征以及聚合物包覆后粉体表面与聚合物的结合状况.分离出未被聚合物包覆的负离子粉,计算负离子粉的有效包覆率.采用COM-3010PRO负离子测试仪测试聚合物包覆前后负离子的释放性能.通过综合对比和分析,判断改性方法的优劣.结果 三种改性方法都可以实现对负离子粉表面的有机化改性.负离子粉表面有机化改性后,平均粒径减小,在甲基丙烯酸甲酯中分散悬浮稳定性明显增加.通过悬浮聚合可以得到聚合物包覆的负离子粉体微球,负离子粉在聚合物中分布均匀、结合牢固,聚合物有效包覆率最高可达79.2%.从改性后负离子粉的悬浮稳定性、聚合物包覆率、在聚合物中的分布状态以及负离子释放性能等方面,均体现出球磨法最优,溶剂回流法次之,干研磨法最差的规律.结论 球磨法是最佳的处理方法,负离子粉在聚合物中分布均匀,聚合物有效包覆率高,负离子释放量大.  相似文献   

11.
Redox abilities of rutile TiO2 powder with an acicular primary particle, having about a 200 m2/g BET surface area obtained by a homogeneous precipitation process in aqueous TiOCl2 solution at 50°C for 4 hrs, were investigated using a photocatalytic reaction in aqueous 4-chlorophenol, Cu- and Pb-EDTA solutions. Its abilities were then compared with those of commercial P-25 powder, together with investigating those of anatase TiO2 powder obtained from the aqueous TiOCl2 solution, having a similar surface area and primary particle shape as those of the rutile powder. The powder was more effective than the anatase or P-25 powder, while the anatase powder unexpectedly showed the slowest decomposition rate and the smallest amount in the same experiments in spite of similar particle shapes and surface area. From the results, it is found that the excellent photo redox abilities of the powder is likely to be caused by the specific powder preparation method regardless of crystalline structures even when having similar particle shapes and values in the surface area. Also, many OH attached to the surface of the TiO2 particle appeared to interfere with the adsorption of decomposing target materials to the TiO2 surface in the solution during the photocatalytic reaction, resulting in a delay in the reaction.  相似文献   

12.
光粉交互对同轴送粉增材制造能量传输的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
激光同轴送粉增材制造涉及复杂的光粉交互作用,也是决定粉末物化状态和激光能量有效利用的关键. 因此,借助背影增效瞬态影像捕捉技术和图像处理技术,以时间序列上粉末粒子亮区面积的实时值与平均值变化规律为依据,分析光粉交互作用过程及其对用于熔化基体剩余激光能量的影响. 结果表明,送粉速率和光粉作用距离是影响有效熔化基体能量的关键因素;送粉速率不变时,载气流量增加提高了粉末颗粒的飞行速度,但是对有效熔化基体的能量影响很小;粉末粒径较小时,光粉交互作用过程越激烈,有效熔化基体的能量随之下降. 总体而言,粉末颗粒飞行速度不变时,光粉作用过程中亮区面积的大小和有效熔化基体能量呈正相关.  相似文献   

13.
This paper deals with the measurement of surface temperature on metal powder during the laser consolidation process with two-color pyrometer. Additionally, the aspect of selective laser sintering (SLS) and selective laser melting (SLM) of metal powder is visualized with high speed video camera. As a result, the surface temperature during the laser irradiation was ranged 1520–1810 °C and the consolidation phenomena was classified according to the melting point of metal powder. The metal powder at the heating process cohered intermittently to the melt pool although the laser beam was continuously irradiated to the powder surface.  相似文献   

14.
氧化锆粉末的表面改性研究   总被引:2,自引:0,他引:2  
王文利  李笃信  李昆 《硬质合金》2007,24(4):198-202
采用表面改性剂C对ZrO2粉末表面进行改性处理,制备出了有机/无机包覆的陶瓷粉末。研究了表面改性对粉末粒度和粒度分布的影响,利用SEM观察了表面改性前后粉末的团聚和微观形貌,测试了不同改性剂含量粉末的沉降时间和润湿接触角。研究结果表明:(1)超声波分散时间越长,粉末的中位径粒度越小;(2)改性粉末在二甲苯溶液中的粒度减小,团聚度降低;(3)粉末在二甲苯溶液中的沉降时间快慢为:to<>θ0.5%C>θ3%C≈θ5%C,改性粉末在非极性溶液中的分散性、稳定性和润湿性得到明显提高。  相似文献   

15.
提升AlN陶瓷粉体的抗水解性能对于其储存和成型加工至关重要。使用一种抗水解涂层作为阻止水分与AlN表面接触的屏障,以提升AlN粉体的抗水解性能。采用化学沉淀工艺在AlN粉体表面制备均匀、全包覆的非晶Y2O3涂层。利用TEM、XPS和Zeta电位测试详细研究了包覆层的有效性和完整性。通过测试室温下水基AlN悬浮液的pH-时间曲线以研究AlN粉体的水解性能。结果表明,经包覆处理的AlN粉体能够在水中保持稳定至48 h,这说明Y2O3表面包覆处理可以有效钝化AlN粉体,从而避免了其水解反应的发生。此外,与球磨工艺引入烧结助剂相比,化学沉淀工艺有利于提升AlN陶瓷的热导率。  相似文献   

16.
The phase composition, nanocrystallite size, lattice microstrain and particles morphology of a SrFe12O19 powder subjected to milling and subsequent annealing were studied by various methods. The investigations showed that the high-temperature annealing of the preliminarily milled powder resulted in the increase in the coercive force (μ0Нсi) of the SrFe12O19 powder up to 0.4 T owing to the formation of nanocrystalline structure (D ∼ 103 nm) with low lattice microstrains. However, the annealed powder cannot be textured in an applied magnetic field because of random orientations of the crystallites in powder particles. A processing technique, which includes the low-temperature annealing of powder in an applied magnetic field, was suggested. It allowed us to produce the anisotropic powder of the strontium ferrite with the nanocrystalline structure that ensures the high coercive force of the powder (∼0.4 T) and possibility of the powder texturing in the magnetic field. The prepared samples textured in a magnetic field exhibit the higher both remanence (by a factor of 1.4) and energy product (by a factor of 2.1) as compared to those of isotropic SrFe12O19 samples.  相似文献   

17.
Laser beam melting (LBM) is a powder-bed and laser-based additive manufacturing technology that is increasingly used for the production of metal components. For a sustainability assessment of a production technology, the global warming potential (GWP) can be used, which is commonly referred to as CO2-footprint. Looking at the resource demand of LBM, material losses and powder recycling play a significant role. In the LBM build-up process, powder material is selectively solidified, generating the part layer-by-layer. The non-solidified powder material can be recycled, which is beneficial to the resource efficiency of the process. Due to considerations regarding powder quality degradation, the number of reuse powder cycles in industrial practice varies significantly, ranging from only one to more than several dozen cycles. Similarly, material losses during the process have shown to differ between LBM machines. However, previous approaches for LBM resource efficiency assessment lack a detailed representation of these two factors. In this study, two interacting models are introduced for the evaluation of the GWP of LBM parts. Firstly, a powder reuse cycle calculation model is described. Secondly, a LBM resource and energy consumption model based on the CO2PE!-methodology is put forward with a refined focus on powder recycling and material losses. The models are implemented and validated based on three LBM production use cases including the acquisition of resource and energy consumption data for three commercial LBM machines. GWP-impact values are used from the ProBas database, provided by the German Federal Environmental Agency. Based on the results regarding the three LBM use cases, the role of powder recycling and material losses on the GWP-impact of LBM during the production phase is discussed. The results show that the number of attainable powder reuse cycles lies around 35 cycles (ranging from 1 to 117 cycles) for the analyzed LBM production scenarios when applying the suggested powder recycling strategy. If powder is not recycled and only used once, more than 90% of the powder batch might be discarded. The volume-specific CO2-equivalent of 0.175 kgCO2eq/cm3 can be used as a rule of thumb for a quick estimation of the GWP for LBM parts made from Al-alloy or steel. Electric energy consumption constitutes for the largest share of GWP-impact, followed by the solidified metal powder and the occurring powder losses.  相似文献   

18.
The oxidation behavior of gas-atomized Al and Al alloy powder green compacts during heating prior to hot extrusion compaction was studied at laboratory and industrial scales by TGA, DSC, DTA, EDX, TEM and XRD methods. The effect of the heating of green compacts on the mechanical properties of the powder-extruded samples was assessed. Significant oxidation of Al and Al alloy powder green compacts takes place in the solid state during heating in air. The onset and intensity of oxidation were affected by the Mg content, the surface area of the powder and the volume of the powder green compacts. An exothermic heat associated with the oxidation of Al and Al alloy powders resulted in intense overheating of bulky powder green compacts during heating in air. The samples extruded from the powder green compacts heated in air exhibited reduced strength. The loss in strength was especially pronounced in the case of Mg-containing Al alloy powders. Mg diffuses from a powder metallic core toward the native Al2O3 surface layer present on as-atomized Al alloy powders; it reacts with oxygen present in air and in the Al2O3 surface layer where the MgO phase forms, eventually resulting in the depletion of Mg from the powder core. Materials extruded from Al powders depleted of Mg do not exhibit effective Al-Mg solid solution strengthening or strengthening by Mg-containing precipitates. Economically viable approaches to avoiding the detrimental effects of powder oxidation during the heating of green compacts prior to hot working consolidation are discussed.  相似文献   

19.
研究了粉末冶金法制备SiC颗粒增强镁基复合材料过程中几个非常重要的工艺问题。研究了对比了基体Mg粉的形状和新旧程度、粉末冶金时混料方式和热压工序对镁基复合材料性能的影响。结果表明,采用合适的烘粉处理后,Mg粉的新旧程度对复合材料的无明显影响;与粒状Mg粉相比,片状Mg粉对应的屈服强度有所提高;和普通混粉方式相比,球磨混粉的伸长率略低;热压工序可以使镁基复合材料的性能更趋稳定。  相似文献   

20.
Zn-coating on the surface of Sm2Fe17Nx fine magnet powder was investigated using the vacuum evaporation method in order to prevent the initial decrease of intrinsic coercivity due to aging. The powder was deposited with 2 wt% Zn, and then annealed at 380 °C under a nitrogen atmosphere. After annealing, the sample still kept its powder form. The initial value of the intrinsic coercivity of Zn-coated, annealed powder was nearly the same as that of the starting powder. After annealing, the intrinsic coercivity of Zn-coated powder measured at room temperature had not changed after the 1000 h exposure at 120 °C to air, while the coercivity of the starting powder and that of the Zn-coated powder without annealing showed an immediate decrease in the same test. Aging effect on the coercivity of bonded magnets was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号