首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Self-diffusion coefficients for the oxygen ion in single-crystal Mn-Zn ferrite were determined by the gas-solid isotope exchange technique. The oxygen volume diffusion coefficients can be expressed as D =6.70 × 10−4 exp (-330 (kJ /mol) /RT)m2/s (>1350°C), D=3.94 × 10−10 exp (−137 (kJ/mol)/RT)m2/s (1100° to 1350°C), and D=7.82 × 104 exp (−507 (kJ/mol)/RT)m2/s (<1100°C).  相似文献   

2.
Monazite-type CePO4 powder (average grain size 0.3 μm) was dry-pressed to disks or bars. The green compacts began to sinter above 950°C. Relative density ≧ 99% and apparent porosity <1% were achieved when the specimens were sintered at 1500°C for 1 h in air. The linear thermal expansion coefficient and thermal conductivity of the CePO4 ceramics were 9 × 10−6/°C to 11 × 10−6/°C (200° to 1300°C) and 1.81 W/(m · K) (500°C), respectively. Bending strength of the ceramics (average grain size 4 μm) was 174 ± 28 MPa (room temperature). The CePO4 ceramics were cracked or decomposed by acidic or alkaline aqueous solutions at high temperatures.  相似文献   

3.
The deviation from stoichiometry, δ, in Cr2−δO3 was measured by a tensivolumetric method in the high pO2 range of ≊104 to 104 Pa at 1100°C. The value of δ, or chromium vacancy concentration, was≊9×10−5 mol/mol Cr2O3 in air for Cr2O3 with 99.999% purity. The chemical diffusion coefficient, DT, determined from equilibration data was ≊4.6× cm2·s−1 at 1100°C for pO2= 2.2 ×101 Pa. The self-diffusion coefficient of Cr ions was calculated from and δ and found to be≊1.6×10-17 cm2-s−1, in good agreement with recently measured values.  相似文献   

4.
Purified air is passed over a specimen of YBa2Cu3O7– x at 890°C; the vaporized substances are condensed in a pure alumina tube, then subjected to inductively controlled plasma analysis. Vapor pressure values of 2.5 × 10−5 Pa for BaO( g ), 1.2 × 10−4 Pa for Cu( g ), and 2.2 × 10−5 Pa for CuO( g ) are obtained under 2.1 × 104 Pa (0.21 bar) of oxygen pressure. No Y vapor is detected at this temperature.  相似文献   

5.
Oxygen 18O tracer diffusion in Czochralski-grown mullite single crystals is investigated along [010] and [001]. Oxygen diffusion coefficients range between ∼5 × 10−20 m2/s (1250°C) and ∼9 × 10−18 m2/s (1525°C). The data does not show any significant anisotropy. The values of the activation enthalpy (4.5 eV) and of the activation entropy ((3.4 ± 1.6) k B, where k B is the Boltzmann constant) suggest that the atomic transport occurs via thermally activated vacancies.  相似文献   

6.
Transparent lanthana-doped yttria fabricated by transient solid second-phase sintering under wet hydrogen typically has a broad absorption band with a peak at 3.08 μm. The absorption band shift observed in samples treated in wet deuterium indicated that the 3.08-μm absorption was due to OH ions. The diffusion rates of hydrogen defects in lanthana-doped yttria were determined in the temperature range from 1000° to 1400°C. The changes in the concentrations of OH ions upon anneals were determined by measuring infrared absorbance at 3.08 μm. The diffusion coefficient is 1.3 × 10−7, 9.9 × 10−7, and 4.1 × 10−6 cm2/s at 1000°, 1200°, and 1400°C, respectively, with an activation energy of 140 kJ/mol. Annealing in a controlled oxygen partial-pressure environment can remove the OH absorption band and bring the total absorption in the 3- to 5-μm range closer to the intrinsic values.  相似文献   

7.
We measured the volume thermal expansion of Ti3SiC2 from 25° to 1400°C using high-temperature X-ray diffraction using a resistive heated cell. A piece of molybdenum foil with a 250 μm hole contained the sample material (Ti3SiC2+Pt). Thermal expansion of the polycrystalline sample was measured under a constant argon flow to prevent oxidation of Ti3SiC2 and the molybdenum heater. From the lattice parameters of platinum (internal standard), we calculated the temperature by using thermal expansion data published in the literature. The molar volume change of Ti3SiC2 as a function of temperature in °C is given by: V M (cm3/mol)=43.20 (2)+9.0 (5) × 10−4 T +1.8(4) × 10−7 T 2. The temperature variation of the volumetric thermal expansion coefficient is given by: αv (°C−1)=2.095 (1) × 10−5+7.700 (1) × 10−9 T . Furthermore, the results indicate that the thermal expansion anisotropy of Ti3SiC2 is quite mild in accordance with previous work.  相似文献   

8.
A crack-free silica composite membrane has been synthesized from a nanoparticulate silica sol (particle diameter <10 nm) by a pressurized sol–gel coating technique developed in this study. The microporous silica layers with an estimated pore radius of 0.78 nm were deposited inside the pores (average pore size of 0.1 μm) of slip cast a-alumina support tubes. The microstructure of the coated layer was controlled by adjusting sol properties and pressurizing conditions. The room-temperature intrinsic permeability of N2 through the silica membrane layer after heat treatment at 200°C is about 4.9 × 10−12 mol·m/m2·s· Pa, and the mechanism of gas transport is Knudsen flow. The thermal stability of the silica composite membrane is excellent up to 500°C.  相似文献   

9.
Thermal expansion of the low-temperature form of BaB2O4 (β-BaB2O4) crystal has been measured along the principal crystallographic directions over a temperature range of 9° to 874°C by means of high-temperature X-ray powder diffraction. This crystal belongs to the trigonal system and exhibits strongly anisotropic thermal expansions. The expansion along the c axis is from 12.720 to 13.214 Å (1.2720 to 1.3214 nm), whereas it is from 12.531 to 12.578 Å (1.2531 to 1.2578 nm) along the a axis. The expansions are nonlinear. The coefficients A, B , and C in the expansion formula L t = L 0(1 + At + Bt 2+ Ct 3) are given as follows: a axis, A = 1.535 × 10−7, B = 6.047 × 10−9, C = -1.261 × 10−12; c axis, A = 3.256 × 10−5, B = 1.341 × 10−8, C = -1.954 × 10−12; and cell volume V, A = 3.107 × 10−5, B = 3.406 × 10−8, C = -1.197 × 10−11. Based on α t = (d L t /d t )/ L 0, the thermal expansion coefficients are also given as a function of temperature for the crystallographic axes a , c , and cell volume V.  相似文献   

10.
Secondary ion mass spectrumètry has been applied for measuring the tracer diffusivity of oxygen in the c direction of single-crystal rutile for a temperature range of 1150 to 1450 K at 6000 Pa pressure of oxygen gas. Specimens diffusion-annealed in oxygen gas containing 18O were subsequently continuously sputtered and analyzed for 16O and 18O. The tracer diffusivity was determined from the depth profile of 18O, taking into account a surface exchange reaction of oxygen. The tracer diffusivity in Cr2O3-doped rutile was 3 to 8 times larger than that in pure rutile. For pure rutile, the diffusivity is expressed by D (m2/s)=3.4×10−7, exp [-251(kJ/mol)/ RT ], and for 0.08 mol% Cr2O3-doped rutile, by D (m2/s)= 2.0×10−8 exp[-204(KJ/mol)/ RT ]. The Cr2O3 doping had a catalytic effect on the rate constant of the surface exchange reaction on the c surface. The rate constant is represented, for pure rutile, by K (m/s)= 2.4×10−1 exp[-246(KJ/mol)/ RT ], and for 0.08 mol% Cr2O3-doped rutile, k (m/s)= 3.5×10−5 exp[-131(KJ/mol)/ RT ].  相似文献   

11.
In this work, a bulk Nb4AlC3 ceramic was prepared by an in situ reaction/hot pressing method using Nb, Al, and C as the starting materials. The reaction path, microstructure, physical, and mechanical properties of Nb4AlC3 were systematically investigated. The thermal expansion coefficient was determined as 7.2 × 10−6 K−1 in the temperature range of 200°–1100°C. The thermal conductivity of Nb4AlC3 increased from 13.5 W·(m·K)−1 at room temperature to 21.2 W·(m·K)−1 at 1227°C, and the electrical conductivity decreased from 3.35 × 106 to 1.13 × 106Ω−1·m−1 in a temperature range of 5–300 K. Nb4AlC3 possessed a low hardness of 2.6 GPa, high flexural strength of 346 MPa, and high fracture toughness of 7.1 MPa·m1/2. Most significantly, Nb4AlC3 could retain high modulus and strength up to very high temperatures. The Young's modulus at 1580°C was 241 GPa (79% of that at room temperature), and the flexural strength could retain the ambient strength value without any degradation up to the maximum measured temperature of 1400°C.  相似文献   

12.
The dc electrical strength of sapphire and poly crystalline alumina was studied up to 1400°C. The electrical strength was essentially identical for both materials. It was > 106 V/cm at room temperature and decreased gradually with temperature up to 900°C (2.6×105 V/ cm), then dropped rapidly to 2×104 V/cm at 1400°C for a sample thickness of ∼ 100 μm. The electrical strength decreased with the sample thickness. It was inversely proportional to the thickness for samples thicker than ∼ 600 μm at 1200°C. The breakdown behavior was explained on the basis of a thermal breakdown model.  相似文献   

13.
Sintered α-SiC was exposed for 10 h to H2 containing various partial pressures of H2O ( P H2O from 5×10−6 to 2×10−2 atm; 1 atm≅105 Pa) at 1300° and 1400°C. Weight loss, surface morphology, and room-temperature flexural strength were strongly dependent on P H2O. The strength of the SiC was not significantly affected by exposure to dry H2 at a P H2O of 5×10−6 atm; and following exposure at P H2O >5×10−3 atm, the strength was even higher than that of the as-received material. The increase in strength is thought to be the result of crack blunting associated with SiO2 formation at crack tips. However, after exposure in an intermediate range of water vapor pressures (1×10−5< P H2O <1×10−3 atm), significant decreases in strength were observed. At a P H2O of about 1×10−4 atm, the flexural strength decreased approximately 30% and 50% after exposure at 1300° and 1400°C, respectively. The decrease in strength is attributed to surface defects caused by corrosion in the form of grain-boundary attack and the formation of pits. The rates of weight loss and microstructural changes on the exposed surfaces correlated well with the observed strength changes.  相似文献   

14.
The tribological properties of Ti2SC were investigated at ambient temperatures and 550°C against Ni-based superalloys Inconel 718 (Inc718) and alumina (Al2O3) counterparts. The tests were performed using a tab-on-disk method at 1 m/s and 3N (≈0.08 MPa). At room temperature, against the superalloy, the coefficient of friction, μ, was ∼0.6, and at ∼8 × 10−4 mm3·(N·m)−1 the specific wear rate (SWRs), was high. However, against Al2O3, at ∼5 × 10−5 mm3·(N·m)−1 and ∼0.3, the SWRs and μ were significantly lower, which was presumably related to more intensive tribo-oxidation at the contact points. At 550°C, the Ti2SC/Inc718 and Al2O3 tribocouples demonstrated comparable μ's of ∼0.35–0.5 and SWRs of ∼7–8 × 10−5 mm3·(N·m)−1. At 550°C, all tribosurfaces were covered by X-ray amorphous oxide tribofilms. At present, Ti2SC is the only member of a family of the layered ternary carbides and nitrides (MAX phases) that can be used as a tribo-partner against Al2O3 in the wide temperature range from ambient to 550°C.  相似文献   

15.
The knowledge of the steady-state stress for plastic deformation as a function of temperature and strain rate is essential for hot-forming superconducting material into commercially useful shapes. In this paper, results are presented on the experimental determination of the rheology of fully dense polycrystalline Y1Ba2Cu3O7−x superconducting material at temperatures ranging from 750° to 950°C and strain rates of 10−4, 10−5, and 10−6 s−1. The data are best fitted by a power law: ε(s−1)=8.9 × 10−17. (s−1) σ2.5 (Pa) exp [−2.01 × 105(J·mol−1)|RT]. X-ray analysis shows that the superconducting material retains its phase composition after nearly 70% total strain of the sample. A strong anisotropy in the resistivity of the deformed samples is observed because of the development of a preferred orientation of the a or b axis of Y1Ba2Cu3O7−x orthorhombic perovskite single crystals perpendicular to the principal maximum compressive stress.  相似文献   

16.
The oxidation behavior of SiCN–ZrO2 fibers and SiCN at 1350°C are compared. The as-measured parabolic rate constants for the two materials are nearly the same (15–20 × 10−18 m2/s). However, after implementing a correction for the difference in the compositions, the rate constant is 13.2 × 10−18 m2/s for the fiber, and 29.4 × 10−18 m2/s for SiCN. The lower oxidation rate of the fiber is ascribed to the lower carbon content in the fiber material.  相似文献   

17.
Dense Nb2AlC ceramic was synthesized from NbC, Nb, and Al powder mixture at 1650°C and a pressure of 30 MPa for 90 min using an in situ reaction/hot-pressing method. The reaction kinetics, microstructure, physical, and mechanical properties of the fabricated material were investigated. A thermal expansion coefficient of ∼8.1 × 10−6 K−1 was measured in the temperature range of 30°–1050°C. At room temperature a thermal conductivity of ∼20 W·(m·K)−1 and a Vickers hardness of ∼4.5 GPa were determined. The material attained Young's modulus, four-point bending strength and fracture toughness of ∼294 GPa, ∼443 MPa, and ∼5.9 MPa·m1/2, respectively. The nanolayered grains with a mean grain size of 17 μm contributed to the damage tolerance of this ceramic. Quenching from 600°, 800°, and 1000°C into water at room temperature resulted in decrease in bending strength from 443 MPa for the as-synthesized Nb2AlC to 391, 156, and 149 MPa, respectively.  相似文献   

18.
The sintering of spherical borosilicate glass powder (particle size 5 to 10 μm) under a uniaxial stress was studied at 800°C. The experiments allowed the measurement of the kinetics of densification and creep, the viscosities for creep and bulk deformation, and the sintering stress which was found to increase with density. The data show excellent qualitative agreement with Scherer's theory of viscous sintering. In addition, the quantitative comparison between theory and experiment shows good agreement; the measured viscosity of the bulk glass was ∽1×109 P (∽1×108 Pa·s) compared to ∽3×109 P (∽3 Pa·s) obtained by fitting the data with Scherer's theory.  相似文献   

19.
The metastable crystal structure of strontium- and magnesium-substituted LaGaO3 (LSGM) was studied at room and intermediate temperatures using powder X-ray diffractometry and Rietveld refinement analysis. With increased strontium and magnesium content, phase transitions were found to occur from orthorhombic (space group Pbnm ) to rhombohedral (space group R [Threemacr] c ) at the composition La0.825Sr0.175Ga0.825Mg0.175O2.825 and, eventually, to cubic (space group Pm [Threemacr] m ) at the composition La0.8Sr0.2Ga0.8Mg0.2O2.8. At 500°C in air and at constant strontium and magnesium content, a phase transformation from orthorhombic (space group Pbnm ) to cubic (space group Pm [Threemacr] m ) was observed. For the orthorhombic modification, thermal expansion coefficients were determined to be α a ,ortho = 10.81 × 10−6 K−1, α b ,ortho = 9.77 × 10−6 K−1, and α c ,ortho = 9.83 × 10−6 K−1 (25°–400°C), and for the cubic modification to be αcubic= 13.67 × 10−6 K−1 (500°–1000°C).  相似文献   

20.
Delayed failure and creep behavior of high-purity Si3N4 sintered without additives with a mean grain size of 1 μm has been measured at 1400°C. Lifetime under 300 MPa was >240 h, which showed good agreement with the value predicted in our previous report. Creep strain rate ranged from 1 × 10−5 to 3 × 10−5 h−1 between 200 and 360 MPa. These values demonstrate the excellent potential of high-purity Si3N4 materials for structural application up to 1400°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号