共查询到14条相似文献,搜索用时 93 毫秒
1.
针对电涡流缓速器制动力矩热衰退严重的问题,提出了一种基于横向磁通的转子内嵌式电磁液冷缓速器,研究了其结构特点和工作原理,根据其涡流分布规律,利用电磁学原理推导出了缓速器制动力矩计算公式,得到了缓速器制动力矩与转子尺寸、凸极形状、定子材料、励磁电流及转子转速等参数之间的关系,并通过试验验证了制动力矩计算公式的正确性.最后对该电磁液冷缓速器进行了空损力矩试验和制动力矩热衰退试验.试验结果表明,该电磁液冷缓速器结构合理,功率密度高,持续制动热衰退小. 相似文献
2.
电磁液冷缓速器制动力矩影响参数 总被引:2,自引:0,他引:2
针对传统电涡流缓速器的风冷散热、热衰退问题严重的缺点,提出一种双凸极构造的电磁缓速器模型.在该缓速器的定子内设有液体通道,通过液冷措施及时排出缓速器工作时产生的热量,使其保持较低的温度;介绍了该缓速器的结构,在进行理论分析后,应用电磁场有限元分析专用工具,对缓速器的磁场和涡流场进行分析,详细讨论了电导率、励磁电流以及励磁电流饱和程度对制动力矩的影响.结果表明:随着电导率的增加,制动力矩逐渐趋于饱和;当励磁电流饱和时,随着励磁电流的增大,制动力矩不会明显地增加;当励磁电流的饱和程度不断增加时,制动力矩变化缓慢. 相似文献
3.
针对液力缓速器结构复杂、价格高的缺点, 提出一种具有双凸极构造且定子内置水道的电磁液冷缓速器设计方案.建立制动系统模型, 运用有限元法分析静态和瞬态缓速器内电磁场变化规律、制动特性及磁饱和程度.设计制作2000 N·m样机, 通过实验测试, 实验结果与有限元分析计算结果相差5%以下, 得出在750 r/min时制动力矩达到稳定值, 并且在转速1000 r/min、励磁电流为90 A时制动力矩可达到2030 N·m. 相似文献
4.
针对车用永磁缓速器的设计参数优化问题,建立永磁缓速器的电磁场数学模型.应用有限元方法对缓速器的磁场和涡流场进行数值求解,详细讨论了转子的电导率、磁导率以及镀覆层对制动力矩的影响,并得出转子表面改性后缓速器制动功率公式.仿真结果表明:转子材料的电导率较小时,电导率与制动力矩基本成正比例关系,但随电导率进一步增大,制动力矩逐渐趋于饱和;转子相对磁导率对制动力矩的影响较小;高电导率且非磁性材料的转子产生的制动力矩远小于软磁材料;镀覆层能增加制动力矩的最大值,并使得制动力矩最大点向低速移动,但会导致高速时制动力矩更快地下降. 相似文献
5.
为保证在长下坡工况时的安全行驶,重载车辆普遍安装液力缓速器或电涡流缓速器.液力缓速器(液缓)低速特性差,单独使用难以满足重载车辆在低车速下长坡时对辅助制动系统的需求,而电涡流缓速器(电缓)在高速时扭矩小,由此得出:电缓与液缓两者的制动性能具有互补的特点.结合液力制动及电涡流制动机理,将电缓与液缓一体化设计,获得了一种径向构造的电液复合缓速器(简称电液复合缓速器).该缓速器在低转速下主要依靠电涡流缓速部分制动,在高速时依靠电涡流缓速部分及液力缓速部分共同作用.对试制的样机进行台架试验,研究了电液复合缓速器的制动特性和控制方法.同时,建立车辆仅依靠缓速器制动的动力学模型,并根据试验结果建立了考虑响应时间的缓速器模型.通过对上述模型进行数值模拟,研究在相同空间内设计的电液复合缓速器、纯液缓和纯电缓的制动特性.研究发现车辆仅依靠电液复合缓速器进行制动,不但能够满足国标对车辆辅助制动系统的要求,还能够使制动时间最短.除此之外,可仅通过控制电涡流部分的制动扭矩实现车辆的恒速控制,从而简化车辆辅助制动系统的控制难度. 相似文献
6.
介绍了轮边缓速器的结构和工作原理,基于Matlab/Simulink仿真技术,建立了轿车轮边缓速器的动力学模型,对轮边缓速器的制动过程进行仿真.根据速度信号对输入电流大小进行控制,使得汽车在高速情况下,轮边缓速器产生合适的制动力矩,并将轮胎的滑移率控制在最佳的滑移率附近,迅速降低汽车行驶速度,使汽车处于稳定的制动状态.通过与ABS的仿真结果对比,表明;轮边缓速器具有良好的制动性能。 相似文献
7.
针对传统电涡流缓速器制动力矩热衰退严重,液力缓速器结构复杂、价格高以及拖挂车辆缓速器安装位置的特殊性,提出了一种自励式车桥电磁液冷缓速器.研究了自励式车桥缓速器的结构特点和工作原理,利用电磁学原理推导出缓速器气隙磁密和制动力矩的公式,建立制动系统和发电系统的数学分析模型,对制动系统的磁路和发电系统的性能进行分析.设计了2 000 N·m自励式车桥缓速器的三维模型,利用有限元法对其电磁场分布、制动力矩和发电特性等进行瞬态仿真分析,得出影响制动力矩和发电性能的相关因素.最后对自励式车桥缓速器样机进行台架试验,对缓速器样机制动特性和发电特性进行测试,并将测试结果与理论计算结果进行对比,得出测试结果与理论计算结果误差在6%以内;在车桥缓速器转速为1 000 r/min时,制动力矩达到2 000 N·m,工作20 min后,制动力矩为1 580 N·m,下降了20.8%,满足重型车辆的要求;在转速为1 000 r/min时,发电机负载电流达到90 A,满足供电需求,证明自励式车桥缓速器设计合理,满足车辆制动要求.
相似文献8.
介绍了轮边缓速器的结构和工作原理,基于Matlab/Simulink仿真技术,建立了轿车轮边缓速器的动力学模型,对轮边缓速器的制动过程进行仿真.根据速度信号对输入电流大小进行控制,使得汽车在高速情况下,轮边缓速器产生合适的制动力矩,并将轮胎的滑移率控制在最佳的滑移率附近,迅速降低汽车行驶速度,使汽车处于稳定的制动状态.通过与ABS的仿真结果对比,表明轮边缓速器具有良好的制动性能. 相似文献
9.
针对电涡流缓速器制动力矩数学模型在高速时的计算力矩与实际输出力矩存在较大偏差的缺点,提出了一种基于数学模型和神经网络模型相结合的混合制动力矩模型,在电涡流缓速器低速时采用数学模型计算力矩,在高速时采用神经网络模型来逼近非线性输出力矩.分析了电涡流缓速器的输出制动力矩在低、高速时的特性,提出了数学模型与神经网络模型切换点的选择方法.通过实验对比了基于数学模型和基于混合模型的制动力矩曲线的逼近效果,结果表明混合模型更为有效. 相似文献
10.
缓速器是一种辅助刹车系统,有延长传动系统和制动系统寿命的功效,根据物体穿过极性相反的线圈磁场时,将产生电涡流,把物体的动能转化为热量消耗掉,由该理论研制出了缓速器,作为汽车的辅助制动装置。通过实验验证了该缓速器具有安全、实用等特点,符合汽车辅助制动装置的要求。目前已经成功开发出该产品作为辅助制动系统应用于汽车上。 相似文献
11.
王文辉 《武汉理工大学学报(信息与管理工程版)》2012,34(2):178-180
针对目前车辆的可靠性和安全性存在的问题,建立了采用电磁缓速制动器的汽车在制动过程中滑移率的计算模型,分析了电磁缓速制动器在辅助制动过程中对汽车滑移率的影响,研究了制动临界情况下滑移率与地面附着系数之间的相互关系,为电磁缓速制动器的设计及其与车辆间的匹配,以及车辆制动过程中滑移率的最佳控制打下了基础. 相似文献
12.
为了提高缓速器气隙磁场和制动力矩计算精度,将矢量磁位法应用到永磁缓速器涡流场有限元计算中,并考虑转子磁导率的非线性以及涡流产生磁场对永磁体磁场削弱作用.应用电磁场有限元仿真软件,采用混合自动剖分技术,得到缓速器电磁场数值解.试验结果表明,静态工作间隙磁感应强度计算值与试验值误差在5%以下,永磁缓速器制动力矩数值计算值与试验值吻合较好. 相似文献
13.
研究了数种缓凝剂对碱碳酸盐矿-矿渣灌浆材料工作性能的影响。结果表明,适用于碱矿渣水泥的部分缓凝剂均不适用于碱碳酸盐矿-矿渣灌浆材料,而缓凝剂BaCl2无论是以粉末形式还是以溶液形式掺入,均可很好地改善该灌浆材料的流动性能,有效延长其凝胶时间并促进材料后期强度的发展,但早期强度降低。以粉末形式掺入时,3d强度降低约3696左右。同时分别探讨了BaCl2溶液和粉末BaCl2的作用机理。 相似文献
14.
通流式气波转子性能试验研究 总被引:1,自引:0,他引:1
气波转子是利用气波来传递能量的一种压力交换装置,已成功应用于内燃机及燃气轮机上.为研究通流式(through-flow,TF)气波转子特性,重新设计了定子,搭建了试验台架,并完成了TF气波转子的性能台架试验.进行了不同转速、不同温度、不同压力工况下的性能试验.结果表明,提高气波转子能量入口处的压力和温度有利于提高其性能,TF气波转子的最佳转速为13 000 r/min左右.试验结果表明该TF气波转子结构基本合理,能提高进气压力,最大压比可达2.0. 相似文献