首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Voltammetric and spectroelectrochemical properties and electrocatalytic activities of thiol-derivatized phthalocyanine complexes for hydrogen production have been investigated. Voltammetric and spectroelectrochemical measurements show that while cobalt phthalocyanine complexes (CoPc) present well defined metal-based and ring-based redox processes, all other complexes give only ring-based reduction and oxidation processes. The redox processes are generally diffusion-controlled, reversible and one-electron transferred processes. The complexes bearing tetra(acetoxyethylthio) substituents represents aggregation tendency in DCM solution. Cobalt and nickel phthalocyanines are easily electrodeposited on the GCE working electrode during the repeating cycles of positive potentials. Electrocatalytic activities of electrodeposited complexes indicated that CoPc catalyzed the proton reduction via the electro-reduced [CoIPc2−]1− and/or [CoIPc3−]2− species depending on the pH of the aqueous solution.  相似文献   

2.
Manganese tetrakis (benzyl-mercapto) phthalocyanine (MnTBMPc) and manganese tetrakis (dodecyl-mercapto) phthalocyanine (MnTDMPc) complexes were synthesized and their spectral and electrochemical properties are reported. Cyclic voltammetric data showed three reversible to quasi-reversible and two irreversible redox processes for both complexes. Ring substituents influenced the positions of both oxidation and reduction redox couples. Spectroelectrochemistry confirmed the first two reductions to be due to MnIIIPc2−/MnIIPc2− and MnIIPc3−/MnIIPc2− processes. The first example of a formation of self-assembled monolayers (SAMs) using thiol substituted MnPc complexes is presented, the SAMs were found to show blocking characteristics towards some faradaic reactions.  相似文献   

3.
The work reports on cyclic voltammetry (CV), square wave voltammetry and spectroelectrochemistry of the following complexes: tetrakis (benzylmercapto) phthalocyanine complexes of Zn(II) (ZnTBMPc, 4a), Co(II) (CoTBMPc, 5a), and Fe(II) (FeTBMPc 6a); tetrakis (dodecylmercapto) phthalocyanine complexes of Zn(II) (ZnTDMPc, 4b), Co(II) (CoTDMPc, 5b), and Fe(II) (FeTDMPc, 6b). More reversible CV couples were observed for complexes 4a, 5a, and 6a containing thiol phenyl ring substituents. Complexes 4b, 5b, and 6b containing long chain thiol substituents showed less reversible couples. Complexes 6a and 6b showed a relatively large number of redox processes (5 for 6a and 6 for 6b) within the potential window employed in this work. The processes for FePc derivatives (6a) are assigned to FeIIIPc−1/FeIIIPc−2, FeIIIPc−2/FeIIPc−2, FeIIPc−2/FeIPc−2, FeIPc−2/FeIPc−3, and FeIPc−3/FeIPc−4 and for the CoPc derivative (5a) to CoIIIPc−1/CoIIIPc−2, CoIIIPc−2/CoIIPc−2, CoIIPc−2/CoIPc−2, and CoIPc−2/CoIPc−3.  相似文献   

4.
Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4α-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4α-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4α-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4α-CoIITAPc on GC electrode has reached the saturation coverage (Γs) within 3 h. The Γs value for the SAM of 4α-CoIITAPc on GC electrode was found to be 2.37 × 10−10 mol cm−2. Gibbs free energy (ΔGads) and adsorption rate constant (kad) for the adsorption of 4α-CoIITAPc on GC surface were found to be −16.76 kJ mol−1 and 7.1 M−1 s−1, respectively. The possible mechanism for the self-assembly of 4α-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from π stacking. The contribution of π stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4α-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4α-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.  相似文献   

5.
Metal-free (H2Pc) and metallophthalocyanines (MPc; M: Co, Zn) with four n-pentyl ester of thioglycolic acid groups have been synthesized by the esterification of the corresponding carboxylic acid derivatives with n-pentanol. The novel phthalocyanine compounds were characterized by elemental analyses, mass, FT-IR and UV-Vis spectral data. The aggregation investigations carried out in different concentrations and solvents indicate that ester substituted metal-free and metallo-phthalocyanine compounds have not shown any aggregation behavior in the concentration range of about 10−5 M. Electrochemical and in-situ spectroelectrochemical measurements give common MPc based redox behaviors which supported the proposed structure of the complexes. While CoPc gives both metal-based and ring-based redox processes, H2Pc and ZnPc give only ring-based electron transfer processes. In-situ electrocolorimetric method was applied to investigate the color of the electro-generated anionic and cationic forms of the complexes.  相似文献   

6.
The synthesis and electrochemical characterisation of the following oxotitanium tetra-substituted phthalocyanines are reported: 1,(4)-(tetrabenzyloxyphthalocyaninato)titanium(IV) oxide (5a); 1,(4)-{tetrakis[4-(benzyloxy)phenoxy]phthalocyaninato}titanium(IV) oxide (5b); 2,(3)-(tetrabenzyloxyphthalocyaninato)titanium(IV) oxide (6a) and 2,(3)-{tetrakis[4-(benzyloxy)phenoxy]phthalocyaninato}titanium(IV) oxide (6b). The electrochemical characterisation of complexes octa-substituted with 4-(benzyloxy)phenoxy (9b), phenoxy (9c) and tert-butylphenoxy (9d) groups is also reported. The cyclic voltammograms of the complexes exhibit reversible couples I-III and couple IV is quasi-reversible for complexes 5a, 5b, 6a and 6b. The first two reductions are metal-based processes, confirmed by spectroelectrochemistry to be due to TiIVPc2−/TiIIIPc2− and TiIIIPc2−/TiIIPc2− redox processes and the last two reductions are ring-based processes due to TiIIPc2−/TiIIPc3− and TiIIPc3−/TiIIPc4−. Chronocoulometry confirmed a one-electron transfer at each reduction step. The electrochemistry of the above complexes is also compared to the previously reported 5c, 5d, 6c and 6d.  相似文献   

7.
The electrocarboxylation of chloroacetonitrile (NC–CH2–ClRCl) mediated by [CoIIL2]2+ (L = terpyridine) was investigated by cyclic voltammetry. Electrochemical studies under argon atmosphere showed that the monoelectronic reduction of [CoIIL2]2+ yielded a Cobalt(I) complex which after the loss of a terpyridine ligand reacted with chloroacetonitrile. The oxidative addition of chloroacetonitrile on [CoIL]+ gave an alkylCobalt(III) complex [R–CoIIIL]2+ which was reduced into an alkylCobalt(II) complex, highly unstable and decomposed into an alkyl anion and a Cobalt(II) complex. Under carbon dioxide atmosphere, Cobalt(I) complex was shown to be unreactive towards CO2 but CO2 insertion was observed in the alkylCobalt(III) complex [R–CoIIIL] 2+ giving probably a CO2 adduct [R–CoIIIL(CO2)]2+. This adduct presented a strong adsorption at the carbon electrode and was reduced at potential less cathodic than the one of alkylCobalt(III) complex. After reduction, the carboxylate RCO2 (NC–CH2–CO2) was released and a catalytic bielectronic carboxylation of chloroacetonitrile took place. Controlled potential electrolyses confirmed the catalytic process and gave for cyanoacetic acid faradic yields up to 60% under low overpotential conditions.  相似文献   

8.
The mesoporous carbon ceramics SiO2/20 wt% C (SBET = 160 m2 g−1) and SiO2/50 wt% C (SBET = 170 m2 g−1), where C is graphite, were prepared by the sol–gel method. Scanning electron microscopy images and the respective element mapping showed that, within the magnification used, no phase segregation was detectable. The materials containing 20 and 50 wt% of C presented electric conductivities of 9.2 × 10−5 and 0.49 S cm−1, respectively. These materials were used as matrices to support cobalt phthalocyanine (CoPc), prepared in situ on their surfaces, to assure homogeneous dispersion of the electroactive complex in the pores of both matrices. The surface densities of cobalt phthalocyanine on both matrix surfaces were 0.014 mol cm−2 and 0.015 mol cm−2 for materials containing 20 and 50 wt% of C, respectively. Pressed disk electrodes made with SiO2/50 wt% C/CoPc and SiO2/20 wt% C/CoPc were tested as sensors for oxalic acid. The electrode was chemically very stable and presented very high sensitivity for this analyte, with a limit of detection, LOD = 5.8 × 10−7 mol L−1.  相似文献   

9.
This study describes electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring of the electrocatalytic reduction of molecular oxygen and hydronium ion on the phthalocyanine-modified electrodes. For this purpose, electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines (MPc) bearing tetrakis-[4-((4′-trifluoromethyl)phenoxy)phenoxy] groups were performed. While CoPc gives both metal-based and ring-based redox processes, H2Pc, ZnPc and CuPc show only ring-based electron transfer processes. In situ electrocolorimetric method was applied to investigate the color of the electrogenerated anionic and cationic forms of the complexes. The presence of O2 in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes, which indicate electrocatalytic activity of the complexes for the oxygen reduction reaction. Perchloric acid titrations monitored by voltammetry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H+ reduction. The nature of the metal center changes the electrocatalytic activities for hydrogen evolution reaction in aqueous solution. Although CuPc has an inactive metal center, its electrocatalytic activity is recorded more than CoPc for H+ reduction in aqueous solution.  相似文献   

10.
Surface chemistry and electrocatalytic properties of self-assembled monolayers of metal tetra-carboxylic acid phthalocyanine complexes with cobalt (Co), iron (Fe) and manganese (Mn) as central metal ions have been studied. These phthalocyanine molecules are immobilized on gold electrode via the coupling reaction between the ring substituents and pre-formed mercaptoethanol self-assembled monolayer (Au-ME SAM). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed chemisorption of mercaptoethanol via sulfur group on gold electrode and also coupling reaction between phthalocyanines and Au-ME SAM. Electrochemical parameters of the immobilized molecules show that these molecules are densely packed with a perpendicular orientation. The potential applications of the gold modified electrodes were investigated towards l-cysteine detection and the analysis at phthalocyanine SAMs. Cobalt and iron tetra-carboxylic acid phthalocyanine monolayers showed good oxidation peak for l-cysteine at potentials where metal oxidation (MIII/MII) takes place and this metal oxidation mediates the catalytic oxidation of l-cysteine. Manganese tetra-carboxylic acid phthalocyanine monolayer also exhibited a good catalytic oxidation peak towards l-cysteine at potentials where MnIV/MnIII redox peak occurs and this redox peak mediates l-cysteine oxidation. The analysis of cysteine at phthalocyanine monolayers displayed good analytical parameters with good detection limits of the orders of 10−7 mol L−1 and good linearity for a studied concentration range up to 60 μmol L−1.  相似文献   

11.
We report on the electrooxidation of hydrazine catalyzed by single-walled carbon nanotube (SWCNT) functionalized with cobalt phthalocyanine (CoPc) which shows that the presence of the single-walled carbon nanotubes enhances the catalytic activity of the CoPc itself without any change in the reaction mechanism. A synergistic effect, in terms of reactivity when the new nanocomposite material was adsorbed on the GC electrode, was observed. The obtained hybrid electrodes were tested under hydrodynamic conditions, showing two different oxidation processes, which suggest the presence of two different types of active sites on the electrode surface catalyzing the reaction. Electrochemical impedance spectroscopy (EIS) analyses in the presence of [Fe(CN)6]3−/4− as a redox probe revealed that the GC/SWCNT + CoPc showed much lower electron-resistance (Ret) confirming the synergistic effect of the composite mentioned above. Atomic force microscopy (AFM) images showed the clear differences in surface roughness for each film, confirming the different compositions of the hybrid electrodes used in this study.  相似文献   

12.
Non-peripherally substituted cobalt 1,(4)-(tetraphenylthiophthalocyaninato) and peripherally substituted cobalt 2,(3)-(tetraphenylthiophthalocyaninato) complexes were synthesized. Redox processes were observed at E1/2 = ?1.44 V (I), ?0.39 V (II), +0.37 V (III), +0.78 V (IV) and 1.15 V (V) for the non-peripherally substituted and at E1/2 = ?1.42 V (I), ?0.57, ?0.39 V (II), +0.27 V (III), +0.79 V (IV) and +1.10 V (V) for the peripherally substituted complexes, respectively. The couples were assigned to CoIPc?2/CoIPc?3 (I), CoIIPc?2/CoIPc?2 (II), CoIIIPc?2/CoIIPc?2 (III), and CoIIIPc?1/CoIIIPc?2 (IV) using spectroelectrochemistry. The last process (V) could not be ascertained by spectroelectrochemistry but is associated with ring oxidation. Upon reduction or oxidation, the Q band of the non-peripherally substituted complex became less red shifted compared to that of its peripherally substituted counterpart.  相似文献   

13.
Manganese acetate octakis-(2-diethyaminoethanethiol) phthalocyanine (AcMnODEAETPc) was newly synthesized and characterized by spectroscopic and electrochemical methods. Solution electrochemistry of the complex showed three redox processes assigned to MnIIIPc−1/MnIIIPc−2, MnIIIPc−2/MnIIPc−2 and MnIIPc−2/MnIIPc−3 species. The new molecule was polymerized onto a glassy carbon electrode (GCE) to form thin films of different thickness, giving poly-10-AcMnODEAETPc-GCE, poly-20-AcMnODEAETPc-GCE and poly-30-AcMnODEAETPc-GCE, where 10, 20 and 30 represent the number of voltammetry scans during polymerization. Three distinct redox processes were observed on the modified electrode in 0.1 M phosphate buffer solution, pH 5, which confirmed the formation of the polymer. The current signal due to the herbicide, bentazon, was dependent on film thickness; the best signal was obtained on poly-20-AcMnODEAETPc-GCE while poly-10-AcMnODEAETPc-GCE gave the least signal. However, the signals due to the herbicide were better on the different films compared to the bare electrode. Electrochemical impedance spectroscopy (EIS) technique revealed that differences in film thickness offered different charge transfer resistances, Rct, hence difference in current signals for bentazon oxidation were observed on these films. A Tafel slope of 77 mV/decade, obtained for the herbicide on poly-20-AcMnODEAETPc-GCE, denotes a fast one electron transfer followed by a slow chemical step in the electro-oxidation of bentazon. The voltammetry signals of the herbicide on the films indicated the likely involvement of ring-based redox processes in the detection of the herbicide. A plot of background corrected current response, on this film, versus the concentration of bentazon was linear within the range 50–750 μM with a detection limit of 2.48 × 10−7 M.  相似文献   

14.
A series of transition metal (i.e. Cu2+ and Co2+) substituted Krebs type polyoxometalates (POMs), of the general formula [X2W20M2O70(H2O)6]n, X = Sb or Bi, M = Co(II) or Cu(II), have been successfully immobilised onto carbon electrode surfaces through the employment of the layer-by-layer (LBL) technique. This involved the construction of alternating anionic POM, [X2W20M2O70(H2O)6]n, layers and the cationic metallodendrimer, Ru(II)-metallodendrimer as the cationic layers, in addition to a [poly(diallyldimethylammonium chloride)] PDDA base layer. Stable multielectron redox couples associated with the W–O framework, for the Krebs type POMs, and the Ru(III/II) for the metallodendrimer, were clearly observed upon layer construction and redox switching within the pH domain of 2–6.5. The constructed multilayer assemblies exhibited pH dependent redox activity and thin layer behaviour up to 100 mV s−1. The porosity and permeability of the individual multilayer assemblies towards an anionic probe were determined by AC impedance and cyclic voltammetry. The surface morphology of each multilayer was also determined by Atomic Force Microscopy (AFM).  相似文献   

15.
In this work, electrochemical, and in-situ spectroelectrochemical characterization of the metallophthalocyanines bearing tetra-(1,1-(dicarbethoxy)-2-(2-methylbenzyl))-ethyl 3,10,17,24-tetra chloro groups were performed. Voltammetric and in-situ spectroelectrochemical measurements show that while cobalt phthalocyanine complex gives both metal-based and ring-based redox processes, zinc and copper phthalocyanines show only ring-based reduction and oxidation processes. The redox processes are generally diffusion-controlled, reversible and one-electron transfer processes. Differently lead phthalocyanine demetallized during second oxidation reaction while it was stable during reduction processes. An in-situ electrocolorimetric method, based on the 1931 CIE (Commission Internationale de l’Eclairage) system of colorimetry, has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes for the first time in this study.  相似文献   

16.
The first complex [Mn(H2O)6][NiCo(TTHA)(H2O)2] · 4H2O 1 (TTHA6− = triethylenetetraminehexaacetate) containing MnII–CoII–NiII three different 3d metal ions is synthesized and magnetic measurement suggests that ferromagnetic interactions occur between Ni2+ ions and rarely found low-spin Co2+ ions.  相似文献   

17.
The solution redox properties and spectroelectrochemical investigation of the novel metal-free, zinc, nickel and cobalt phthalocyanines with tetra-pentafluorobenzyloxy substituents at the periphery were studied using various electrochemical and spectroelectrochemical measurements. Cyclic voltammetry and differential pulse voltammetry studies show that while Ni(II), Zn(II) and free-phthalocyanines give up to two reduction and two oxidation processes having ligand-based diffusion controlled reversible one-electron electron transfer characters, Co(II) phthalocyanine represents one ligand-based oxidation, one metal-based reduction and one ligand-based reduction processes having diffusion controlled reversible one-electron transfer characters. Assignments of the redox couples are also confirmed by spectroelectrochemical measurements. Reduction potentials of all complexes shift to positive potentials due to the electron withdrawing tetra-pentafluorobenzyloxy substituents compared with those of the phthalocyanines bearing phenoxy derivatives. A linear variation of the first reduction and oxidation potentials versus ze/r has been obtained for zinc and nickel phthalocyanines.  相似文献   

18.
Catalytic activity of a self-assembled monolayer (SAM) of cobalt tetra ethoxythiophene phthalocyanine (CoTEThPc-SAM) complex towards oxidation of thiocyanate (SCN), l-cysteine (CYS) and 2-mercaptoethanol (2-ME) is reported. The oxidation of thiocyanate occurs via a two electron transfer, whereas l-cysteine and 2-ME require 1 electron. The oxidation of thiocyanate is catalysed by ring based processes, while l-cysteine is catalysed by both CoIII/CoII process and by ring based processes. 2-ME is catalysed by CoIII/CoII process. The oxidation of thiocyanate on CoTEThPc was performed in acid media instead of basic media commonly employed. The reaction order was found to be unity for all the analytes, showing that only one molecule of analyte interacts with one molecule of the catalyst during the rate determining step.  相似文献   

19.
Catalysts for the oxygen reduction reaction (ORR) in a microbial fuel cell (MFC) were prepared by the impregnation on carbon black of FeII acetate (FeAc), Cl–FeIII tetramethoxyphenyl porphyrin (ClFeTMPP), and FeII phthalocyanine (FePc). These materials were subsequently pyrolyzed at a high temperature. The ORR activity of all Fe-based catalysts was measured at pH 7 with a rotating disk electrode (RDE) and their performance for electricity production was then verified in a continuous flow MFC. Catalysts prepared with FeAc and pyrolyzed in NH3 showed poor activity in RDE tests as well as a poor performance in a MFC. The ORR activity and fuel cell performance for catalysts prepared with ClFeTMPP and FePc and pyrolyzed in Ar were significantly higher and comparable for both precursors. The iron loading was optimized for FePc-based catalysts. With a constant catalyst load of 2 mg cm−2 in a MFC, the highest power output (550–590 mW/m2) was observed when the Fe content was 0.5–0.8 wt%, corresponding to only 0.01–016 mg Fe/cm2. A similar power output was observed using a Pt-based carbon cloth cathode containing 0.5 mg Pt/cm2. Long-term stability of the Fe-based cathode (0.5 wt% Fe) was confirmed over 20 days of MFC testing.  相似文献   

20.
A comparative discussion of the electrochemical and spectroelectrochemical properties of poly(o-phenylenediamine) POPD, an aromatic diamine, is presented. In situ conductance measurements show that POPD shows some conductance around the redox peak potentials, i.e. = −0.02 < ESCE < 0.00 V. In situ UV–vis and Raman spectroelectrochemical results suggest that radical cations of polyaniline (PANI)-like segments in POPD backbone might be responsible for imparting conductance to this otherwise nonconducting polymer (as commonly supposed in the literature). The presence of radical cations was confirmed by in situ Raman spectra showing a band at 1390 cm−1 characteristic of a C–N+-stretching vibration having an intermediate single/double bond character and being coupled to quinoid rings/polaronic form of PANI segments in the polymer. Results also reveal that POPD shows a close correlation between its electrochemical and spectroelectrochemical properties in the range of −0.02 < ESCE < 0.00 V, and provide support for the suggested presence of doped PANI-like segments in said potential range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号