共查询到19条相似文献,搜索用时 46 毫秒
1.
矩阵聚类法是一种对于给定稀疏二值矩阵求其相关指定面积和密集度的方法。在客户关系管理领域里作为一种数据挖掘技术,矩阵聚类法可以将相关客户和信息聚集成簇。在Apriori算法基础上加以改进提出一种新的矩阵聚类算法来获取满足具体指定条件的所有子矩阵。结果表明新算法能够具体细节地对客户的采购信息加以分析。 相似文献
2.
3.
4.
基于矩阵谱分析的文本聚类集成算法 总被引:1,自引:0,他引:1
聚类集成技术可有效提高单聚类算法的精度和稳定性,其中的关键问题是如何根据不同的聚类成员组合为更好的聚类结果.文中引入谱聚类算法解决文本聚类集成问题,设计基于正则化拉普拉斯矩阵的谱算法(NLM-SA).该算法基于代数变换,通过求解小规模矩阵的特征值和特征向量间接获得正则化拉普拉斯矩阵的特征向量,并用于后续聚类.进一步研究谱聚类算法的关键思想,设计基于超边转移概率矩阵的谱算法(HTMSA).该算法通过求解超边的低维嵌入间接获得文本的低维嵌入,并用于后续K均值算法.在TREC和Reuters文本集上的实验结果验证NLMSA和HTMSA的有效性,它们都获得比其它基于图划分的集成算法更为优越的结果.HTMSA获得的结果比NLMSA略差,而时间和空间需求则比NLMSA低得多. 相似文献
5.
基于图论理论的NJW谱聚类算法的核心思想是将数据点映射到特征空间后再利用K-means算法进行聚类,从而得到原始数据的聚类结果。NJW算法是K-means算法的推广,并且在任意形状的数据上都具有较好的聚类效果,从而有着广泛的应用。但是,类数C和高斯核函数中的尺度参数σ较大程度地影响着NJW的聚类性能;另外,K-means对随机初始值的敏感性也影响着NJW的聚类结果。为此,一种基于启发式确定类数的谱聚类算法(记为DP-NJW)被提出。该算法先根据数据的密度分布确定类中心点和类数,这些类中心点作为特征空间中K-means聚类的初始类中心,然后用NJW进行聚类。文中通过实验将DP-NJW算法和经典聚类算法在7个公共数据集上进行测试和对比,其中DP-NJW算法在5个数据集上的聚类精度高于NJW的平均聚类精度,在另2个数据集上二者持平。对比DPC算法,所提算法在5个数据集上也有不俗的聚类精度,而且DP-NJW的计算消耗较小,在较大的数据集aggregation上表现更为突出。实验结果表明,文中所提的DP-NJW算法更具优势。 相似文献
6.
基于方差权重矩阵模型的高维数据子空间聚类算法 总被引:1,自引:1,他引:0
在处理高维数据时,聚类的工作往往归结为对子空间的划分问题。大量的真实实验数据表明,相同的属性对于高维数据的每一类子空间而言并不是同等重要的,因此,在FCM算法的基础上引入了方差权重矩阵模型,创造出了新的聚类算法称之为WM-FCM。该算法通过不断地聚类迭代调整权重值,使得其重要的属性在各个子空间内更为显著地表征出来,从而达到更好的聚类效果。从基于模拟数据集以及UCI数据集的实验结果表明,该改进的算法是有效的。 相似文献
7.
针对传统谱聚类算法没有解决簇划分过程中,簇间交叉区域样本点对聚类效果有影响这个问题,提出一种基于局部协方差矩阵的谱聚类算法,主要介绍了一种新的计算样本之间相似度亲和矩阵的方法,即通过计算样本点之间的欧氏距离划分出小子集,计算小子集的协方差,通过设定阈值剔除交叉点,由剩下的点构造相似矩阵,对相似矩阵进行特征值分解,用经典的[k]-means算法对由特征向量组成的矩阵聚类。通过在Control等真实数据集上的实验结果表明,该算法在聚类准确率、标准互信息等指标上比较对比算法获得更优秀的效果。 相似文献
8.
随着数据维度的增加,传统聚类算法会出现聚类性能差的现象.SubKMeans是一种功能强大的子空间聚类算法,旨在为K-Means类算法搜索出一个最佳子空间,降低高维度影响,但是该算法需要用户事先指定聚类数目K值,而在实际使用中有时无法给出准确的K值.针对这一问题,引入成对约束,将成对约束与轮廓系数进行结合,提出了一种基于成对约束的SubKMeans聚类数确定算法.改进后的轮廓系数能够更加准确的评价聚类性能,从而实现K值确定,实验结果证明该方法的有效性. 相似文献
9.
10.
评分矩阵(rating matrix)的特点是高维、稀疏、低秩,对其研究的主要方法是低秩矩阵恢复。对这些算法而言,不同评分矩阵的秩,会得到不同的恢复精度。但目前没有理论来研究评分矩阵秩的估计,从而影响了这些算法的应用。从理论上分析了用户聚类数与评分矩阵秩的关系,给出用户聚类数的计算方法,并在此基础上提出一种基于聚类数的秩1矩阵恢复(Clusters Number Rank-1 Matrix Completion,CN-R1MC)算法来恢复评分矩阵。通过在多个推荐系统数据集上的实验证明:用户聚类数能较好地近似评分矩阵的秩,这对提高评分矩阵的恢复精度有重要的作用。所提出的算法有较好的应用价值。 相似文献
11.
基于矩阵的Apriori算法的优化 总被引:1,自引:0,他引:1
在数据挖掘中关联规则挖掘是很重要的一个方面,而Apriori算法是进行关联规则挖掘的经典算法。本文首先分析了经典Apriori算法,然后利用矩阵的思想对其改进,并利用事务压缩的思想对矩阵进行压缩。改进后的算法明显提高了Apriori算法的效率。 相似文献
12.
13.
14.
基于频繁项目对支持矩阵的Apriori优化算法 总被引:4,自引:0,他引:4
提出了一种基于频繁项目对支持矩阵的Apriori改进算法,并在一个Web log的真实数据集上进行了试验,与现有算法的比较表明,该算法比现有算法具有更好的性能. 相似文献
15.
捕要:Apriori算法在关联规则挖掘过程中需要多次扫描事务数据库,产生大量候选项目集,导致计算量过大。为解决该问题,提出一种基于频繁2项集支持矩阵的Apriori改进算法,通过分析频繁k+1项集的生成机制,将支持矩阵与频繁2项集矩阵相结合实现快速剪枝,并大幅减少频繁k项集验证的计算量。实验结果表明,与Apriori算法和ABTM算法相比,改进算法明显提高了频繁项集的挖掘效率。 相似文献
16.
文章提出了一种基于算法选择和结果评估的自动聚类方法。对给定数据集,该方法首先通过分析数据集的潜在簇结构,并依据所发现的簇结构为数据集挑选一种合适的备选聚类算法集;然后利用聚类有效性指标对这个算法集的算法聚类结果进行评估,以确保得到高质量聚类结果。实验结果表明该方法能够自动地挑选适合数据集的聚类算法,并获得高质量的聚类结果。 相似文献
17.
18.
提出集束式整数线性规划形式化模型,利用指令间的功能依赖性解决专用指令集处理器中指令集自动定制的指数性空间问题.在此基础上,针对其前端和后端分别提出了相应的指令定制实现策略.实验结果表明,该指令定制方法可以有效地实现专用指令集的自动设计,并使最终处理器的运算性能得到优化. 相似文献