共查询到18条相似文献,搜索用时 46 毫秒
1.
矩阵聚类法是一种对于给定稀疏二值矩阵求其相关指定面积和密集度的方法。在客户关系管理领域里作为一种数据挖掘技术,矩阵聚类法可以将相关客户和信息聚集成簇。在Apriori算法基础上加以改进提出一种新的矩阵聚类算法来获取满足具体指定条件的所有子矩阵。结果表明新算法能够具体细节地对客户的采购信息加以分析。 相似文献
2.
针对Science杂志上提出的仿射传播(Affinity propagation)聚类产生指定类数的聚类结果时效率较低的问题,提出了基于多网格策略的快速算法。该算法采用多网格搜索策略来减少调用仿射传播算法的次数,改进偏向参数的上界以缩小搜索范围。新方法大幅度地提高了仿射传播聚类在指定类数下的速度性能。实验结果表明新方法十分有效,在运行时间上比现有方法减少了22%-90%。 相似文献
3.
指定类数下仿射传播聚类的快速算法① 总被引:1,自引:0,他引:1
针对Science杂志上提出的仿射传播(Affinity propagation)聚类产生指定类数的聚类结果时效率较低的问题,提出了基于多网格策略的快速算法。该算法采用多网格搜索策略来减少调用仿射传播算法的次数,改进偏向参数的上界以缩小搜索范围。新方法大幅度地提高了仿射传播聚类在指定类数下的速度性能。实验结果表明新方法十分有效,在运行时间上比现有方法减少了22%-90%。 相似文献
4.
基于矩阵谱分析的文本聚类集成算法 总被引:1,自引:0,他引:1
聚类集成技术可有效提高单聚类算法的精度和稳定性,其中的关键问题是如何根据不同的聚类成员组合为更好的聚类结果.文中引入谱聚类算法解决文本聚类集成问题,设计基于正则化拉普拉斯矩阵的谱算法(NLM-SA).该算法基于代数变换,通过求解小规模矩阵的特征值和特征向量间接获得正则化拉普拉斯矩阵的特征向量,并用于后续聚类.进一步研究谱聚类算法的关键思想,设计基于超边转移概率矩阵的谱算法(HTMSA).该算法通过求解超边的低维嵌入间接获得文本的低维嵌入,并用于后续K均值算法.在TREC和Reuters文本集上的实验结果验证NLMSA和HTMSA的有效性,它们都获得比其它基于图划分的集成算法更为优越的结果.HTMSA获得的结果比NLMSA略差,而时间和空间需求则比NLMSA低得多. 相似文献
5.
针对传统谱聚类算法没有解决簇划分过程中,簇间交叉区域样本点对聚类效果有影响这个问题,提出一种基于局部协方差矩阵的谱聚类算法,主要介绍了一种新的计算样本之间相似度亲和矩阵的方法,即通过计算样本点之间的欧氏距离划分出小子集,计算小子集的协方差,通过设定阈值剔除交叉点,由剩下的点构造相似矩阵,对相似矩阵进行特征值分解,用经典的[k]-means算法对由特征向量组成的矩阵聚类。通过在Control等真实数据集上的实验结果表明,该算法在聚类准确率、标准互信息等指标上比较对比算法获得更优秀的效果。 相似文献
6.
在处理高维数据时,聚类的工作往往归结为对子空间的划分问题。大量的真实实验数据表明,相同的属性对于高维数据的每一类子空间而言并不是同等重要的,因此,在FCM算法的基础上引入了方差权重矩阵模型,创造出了新的聚类算法称之为WM-FCM。该算法通过不断地聚类迭代调整权重值,使得其重要的属性在各个子空间内更为显著地表征出来,从而达到更好的聚类效果。从基于模拟数据集以及UCI数据集的实验结果表明,该改进的算法是有效的。 相似文献
7.
基于图论理论的NJW谱聚类算法的核心思想是将数据点映射到特征空间后再利用K-means算法进行聚类,从而得到原始数据的聚类结果。NJW算法是K-means算法的推广,并且在任意形状的数据上都具有较好的聚类效果,从而有着广泛的应用。但是,类数C和高斯核函数中的尺度参数σ较大程度地影响着NJW的聚类性能;另外,K-means对随机初始值的敏感性也影响着NJW的聚类结果。为此,一种基于启发式确定类数的谱聚类算法(记为DP-NJW)被提出。该算法先根据数据的密度分布确定类中心点和类数,这些类中心点作为特征空间中K-means聚类的初始类中心,然后用NJW进行聚类。文中通过实验将DP-NJW算法和经典聚类算法在7个公共数据集上进行测试和对比,其中DP-NJW算法在5个数据集上的聚类精度高于NJW的平均聚类精度,在另2个数据集上二者持平。对比DPC算法,所提算法在5个数据集上也有不俗的聚类精度,而且DP-NJW的计算消耗较小,在较大的数据集aggregation上表现更为突出。实验结果表明,文中所提的DP-NJW算法更具优势。 相似文献
8.
随着数据维度的增加,传统聚类算法会出现聚类性能差的现象.SubKMeans是一种功能强大的子空间聚类算法,旨在为K-Means类算法搜索出一个最佳子空间,降低高维度影响,但是该算法需要用户事先指定聚类数目K值,而在实际使用中有时无法给出准确的K值.针对这一问题,引入成对约束,将成对约束与轮廓系数进行结合,提出了一种基于成对约束的SubKMeans聚类数确定算法.改进后的轮廓系数能够更加准确的评价聚类性能,从而实现K值确定,实验结果证明该方法的有效性. 相似文献
9.
10.
11.
为了解决具有多种特征属性的多媒体数据(多视图数据)挖掘问题,在非负矩阵分解(NMF)算法的基础上,提出了一种多视图正则化矩阵分解算法(MRMF),该算法使用了多元非负矩阵分解技术,同时使用[L2,1]范数描述矩阵分解的损失函数,并采用多视图流形正则化对矩阵分解进行正则化约束。与现有的一些数据聚类或多视图聚类算法相比,提出的MRMF算法不易受到原始数据中噪声的影响,而且能够充分考虑到不同视图在聚类中所具有不同权重的问题,能够对多视图数据进行较为准确的聚类。MRMF算法的有效性在一些经典的公开数据集上进行了验证,并取得了较好的聚类精度。 相似文献
12.
13.
基于矩阵的Apriori算法的优化 总被引:1,自引:0,他引:1
在数据挖掘中关联规则挖掘是很重要的一个方面,而Apriori算法是进行关联规则挖掘的经典算法。本文首先分析了经典Apriori算法,然后利用矩阵的思想对其改进,并利用事务压缩的思想对矩阵进行压缩。改进后的算法明显提高了Apriori算法的效率。 相似文献
14.
15.
16.
文本聚类的目标是把数据集中内容相似的文档归为一类,而使内容不同的文档分开。目前针对不同领域的需求,多种解决聚类问题的算法应运而生。然而,由于文本数据本身固有的复杂特点,如海量、高维、稀疏等,使得对海量文本数据的聚类仍然是一个棘手的问题。提出了层次非负矩阵分解聚类方法,该方法不但保留了非负矩阵分解的优点,如同步识别文档类别和找出类别本质特征,而且能够展现类别间的层次结构。这种类别层次结构在网页预览等应用中是非常有用的。在真实数据集20Newsgroups和Reuters-RCV1上的实验结果表明,层次非负矩阵分解相比已有的方法更有效。 相似文献
17.
Apriori算法在搜索频繁项集过程中,通常需要对数据库进行多次的重复扫描和产生大量无用的候选集,针对此问题提出一种基于矩阵约简的Apriori改进算法。该算法只需扫描一次数据库,将数据库信息转换成布尔矩阵,根据频繁k-项集的性质推出的结论来约简数据结构,有效地降低无效候选项集的生成规模。通过对已有算法的对比,验证该算法能有效地提高挖掘频繁项集的效 相似文献