首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
This paper presents a promising transparent counterelectrode system for a WO3 electrochromic device (ECD) on the basis of a stability-enhanced indium hexacyanoferrate (InHCF) electrode and a NaClO4/propylene carbonate (PC) electrolyte. Through SEM characterization it was found that clusters of granular InHCF nanoparticles (ca. 80-140 nm) were deposited on ITO substrates in HCl and KCl-stabilized plating solutions, and uniform micrometer thick films with high charge capacity could be obtained. From in situ electrochemical quartz crystal microbalance study, it was discovered that Na+ would enter or move out from the InHCF film in the “desolvated” form during the redox process in a PC electrolyte. Besides, NaClO4/PC resulted in higher electrochemical activity and reversibility than LiClO4/PC. With these discoveries, a durable WO3-InHCF ECD featuring blue-to-colorless electrochromism was fabricated successfully. The device remained 73.6 and 88.7% of its initial ΔT values at 600 and 800 nm after 40,000 rapid and successive coloring/bleaching cycles, respectively. Moreover, the cycling-induced loss of electrochromic performance almost completely restored after 1-month rest and kept unchanged for another month. Thus, the applicability of this nonaqueous InHCF counterelectrode system to ECDs was verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号