共查询到20条相似文献,搜索用时 78 毫秒
1.
根据神经网络能有效修正灰色预测模型的思路,本文提出了基于灰色系统及径向基神经网络的组合预测模型。通过采集园区节点交换机的流量数据,在分析网络流量时间序列特性的基础上建立灰色GM(1,1)模型,并采用径向基神经网络对预测模型残差进行修正。实验结果和仿真实验表明,组合模型效果及预测精度远优于单一灰色预测模型。 相似文献
2.
故障预测技术是电子装备预测与健康管理(PHM)领域的核心内容, 对电子装备关键部件实施有效的预测是保证系统正常运行的关键。首先将灰色理论和人工神经网络算法相结合, 构建灰色神经网络模型并对其进行分析; 然后在此基础上通过附加动量变学习速率法对灰色神经网络的权值更新策略进行改进, 提出一种基于改进灰色神经网络的故障预测模型; 最后以某型脉冲测量雷达中频接收组合中的压控振荡器为例, 以采集的原始频率数据为基础进行仿真验证。预测结果表明, 将该预测方法应用于电子装备PHM是行之有效的, 可有效提高故障预测精度。 相似文献
3.
为衡量网络运行负荷和运行状态,对网络进行合理规划,在对目前网络流量预测模型进行了研究的基础上,结合灰色模型和神经网络模型在反映数据的趋势性变化上的明显效果,以及神经网络补偿器,提出了基于补偿器的灰色神经网络流量预测模型,仿真结果验证了所提方法的有效性。 相似文献
4.
空中交通管理是为解决空中交通拥挤而进行的系统化管理,文中介绍了空中交通流量管理的基本概念,并进行了流量管理方法的初探,同时提出了改善流量拥挤现状的环境和合理化建议。 相似文献
5.
余飞 《数字社区&智能家居》2009,(9X):7743-7744
该文采用灰色神经网络的计算方法对产品的需求进行评估推测,该推测是商品销售推测的组成部分,它直接影响到企业的生产,销售,投资等诸多方面,是决策者决策的有力依据。该方法结合了灰色系统理论和人工神经网络理论,力求展现一种最新的预测方法,是用计算机分析运算来预测一种少数据,信息不确定的现实事物,以达到最终的目的。 相似文献
6.
7.
针对中小型污水处理厂出水监测设备长期监测精度不稳定的实际情况,利用灰色理论和广义回归神经网络建立了灰色神经网络模型,根据采集到的污水处理厂进水参数对出水参数进行预测,并对灰色神经网络模型和广义灰色神经网络模型的预测结果进行了对比,对比结果表明:这种灰色神经网络模型的精度明显优于广义神经网络模型,适合应用。 相似文献
8.
9.
周志德 《计算机与数字工程》2010,38(11):114-117
网络流量是衡量网络运行负荷和状态的重要参数,也是网络规划、流量管理等方面起着重要作用的重要参数。在流量管理中,流量模型用于评价接入控制机制和预测网络性能。在灰色神经网络研究的基础上,提出一种新的网络预测方法,通过自适应过滤法对灰色神经组合模型时产生的残差进行修正,从而达到比较精确的效果。实验结果表明,该方法有效可行。 相似文献
10.
当研究的系统扰动因素过大或系统行为在某个时川点发生突变,出现严重扰动系统的异常数据时,提出不应直接按原始数据建模预测,而应根椐实际情况适当地对数据预处理.提出了基于数据修正的改进型灰色神经网络组合和集成预测,并根据南昌火车站旅客发送量时间序列建立了多个模型,从模型预测效果对比中说明数据修正、改进型灰色模型和改进型灰色神经网络、灰色神经网络组合和集成确实能提高预测精度.另外,修正数据要把握一个度,不能修正全部数据,只能修正较异常的数据,要在数据的趋势性和预测的灵敏性间取得平衡。 相似文献
11.
12.
交通流量序列具有不平稳性、周期性、易受节假日等因素影响的特点,因此交通流量预测是一项困难的任务。针对交通流量序列的预测问题,设计了一种基于深度学习的交通流量预测模型。模型融合了卷积神经网络和长短时记忆神经网络两种网络结构,卷积神经网络用于提取特征分量,长短时记忆神经网络综合提取出来的特征分量做序列预测。通过在贵州省高速公路车流量数据集上的验证,模型比传统的预测方法具有更高的精确度和实时性,在不同数据集上的泛化性能良好。 相似文献
13.
14.
程山英 《计算机测量与控制》2017,25(8):155-158
为满足交通控制和诱导系统的实时性需求,减少交通拥挤状况,降低交通事故突发频率,需要对短时交通流进行预测;当前的短时交通流预测方法是采用K-近邻的非参数回归对其进行预测,预测过程中没有将预测模型中关键因素对交通流的影响进行详细的说明,导致预测结果不准确,存在短时交通流预测误差较大的问题;为此,提出一种基于模糊神经网络的短时交通流预测方法;该方法首先以历史短时交通流数据样本序列为基础,将提取的关联维数作为短时交通流的混沌特征量,然后以该特征量为依据,对短时交通流数据进行聚类,使相同的短时交通流聚合类样本比不同的交通流聚合类样本更为贴近,采用高斯过程回归对短时交通流预测模型进行建设,建设过程中利用差分方法对短时交通流预测序列进行平稳化操作之后,对短时交通流预测模型进行训练,将GPR模型引入至短时交通流预测过程中,得到交通流预测方差估计值,并确定交通流预测值置信区间,由此实现短时交通流的预测;由此实现短时交通流的预测;实验结果证明,所提方法可以准确地预测交通运输系统的实时状况,为车辆行驶的最佳路线进行了有效引导,减少了自然影响方面和人为因素对短时交通流预测结果的干扰,为交通部门对交通路况的控制管理提供了依据。 相似文献
15.
针对BP神经网络在道路交通运输能力预测中精度不足及收敛速度慢的问题,引入量子神经网络并构建道路交通能力预测模型.通过对以往数据的发展变化趋势进行分析建立现有数据与时间之间的对应关系,然后再利用这组数据,最后对预测的结果进行分析,预测结果表明:该预测模型能够较好地适应道路交通运输能力数据的特性,且预测精度和收敛速度较改进BP神经网络有显著提高。 相似文献
16.
提出了一种基于遗传算法优化的RBF神经网络交通流预测新方法,该方法把遗传算法应用于RBF神经网络的参数确定中,实现了RBF神经网络隐层高斯函数的中心矢量和基宽向量以及隐层与输出层之间的权值的优化,提高了RBF神经网络的泛化能力。仿真结果表明:改进的RBF网络用于交通流预测中具有可靠的精度和较好的收敛速度,具有广阔的应用推广前景。 相似文献
17.
灰色神经网络系统中对象消息通信的实现 总被引:2,自引:0,他引:2
本文探讨了基于Visual C^ 6.0开发的灰色理论与神经网络融合系统中各功能模块对象之间接口通讯消息发送模型框架,并对其编程定义了通用型的继承类以及其基本的实现过程。 相似文献
18.
基于灰色理论和人工神经网络的瓦斯涌出量预测 总被引:3,自引:0,他引:3
在对监测数据分析的基础上,提出了将灰色理论引入人工神经网络的瓦斯涌出量预测新模型,并通过实验证明该模型在瓦斯预测中得到了比较理想的结果。 相似文献
19.
提出一种基于异常值检测的电梯交通流递归预测方法。对电梯交通流进行时间序列分析得到初始季节时间序列模型,引入异常值检测过程,检测出训练数据中的异常值并进行修正,利用修正序列得到最终的季节时间序列模型。把最终的季节时间序列模型转化为状态空间形式,通过卡尔曼滤波实时调整状态向量,实现电梯交通流的在线预测。仿真结果证明该方法有效。 相似文献
20.
准确的交通流预测能够为管理部门提供合理的决策依据,为驾驶员提供实时的道路状况预警,是交通领域至关重要的问题.近年来,相关研究利用图卷积神经网络(GCN)处理非欧式空间结构的特点,对来自复杂路网的交通流数据进行空间相关性建模.然而,现有基于图卷积的交通流预测方法未能充分考虑空间相关性的有向性和动态性这两个重要特点.考虑到... 相似文献