首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrochemical properties of LiFePO4 were investigated by incorporating conductive carbon from three different carbon sources (graphite, carbon black, acetylene black). SEM observations revealed that the carbon-coated LiFePO4 were smaller than the bare LiFePO4 particles. The carbon-coated LiFePO4 showed much better performance in terms of the discharge capacity and cycling stability than the bare LiFePO4. Among carbon-coated LiFePO4, the particles coated with graphite exhibited better electrochemical properties than others coated with carbon black or acetylene black.  相似文献   

2.
The Li3V2(PO4)3/C cathode materials are synthesized by a simple solid-state reaction process using stearic acid as both reduction agent and carbon source. Scanning electron microscopy and transmission electron microscopy observations show that the Li3V2(PO4)3/C composite synthesized at 700 °C has uniform particle size distribution and fine carbon coating. The Li3V2(PO4)3/C shows a high initial discharge capacity of 130.6 and 124.4 mAh g−1 between 3.0 and 4.3 V, and 185.9 and 140.9 mAh g−1 between 3.0 and 4.8 V at 0.1 and 5 C, respectively. Even at a charge–discharge rate of 15 C, the Li3V2(PO4)3/C still can deliver a discharge capacity of 103.3 and 112.1 mAh g−1 in the potential region of 3.0–4.3 V and 3.0–4.8 V, respectively. Based on the analysis of cyclic voltammograms and electrochemical impedance spectra, the apparent diffusion coefficients of Li ions in the composites are in the region of 1.09 × 10−9 and 4.95 × 10−8 cm2 s−1.  相似文献   

3.
A hydrothermal reaction has been adopted to synthesize pure LiFePO4 first, which was then modified with carbon coating and cupric ion (Cu2+) doping simultaneously through a post-heat treatment. X-ray diffraction patterns, transmission electron microscopy and scanning electron microscopy images along with energy dispersive spectroscopy mappings have verified the homogeneous existence of coated carbon and doped Cu2+ in LiFePO4 particles with phospho-olivine structure and an average size of 400 nm. The electrochemical performances of the material have been studied by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge–discharge measurements. The carbon-coated and Cu2+-doped LiFePO4 sample (LFCu5/C) exhibited an enhanced electronic conductivity of 2.05 × 10−3 S cm−1, a specific discharge capacity of 158 mAh g−1 at 50 mA g−1, a capacity retention of 96.4% after 50 cycles, a decreased charge transfer resistance of 79.4 Ω and superior electrode reaction reversibility. The present synthesis route is promising in making the hydrothermal method more practical for preparation of the LiFePO4 material and enhancement of electrochemical properties.  相似文献   

4.
A series of Mo-doped LiFe1−3xMoxPO4/C (x = 0.000, 0.025, 0.050, 0.100, 0.150) cathode materials are synthesized by sol–gel method. XRD, ICP and Rietveld refinement results reveal that Mo doped in the crystal lattice and probably occupied Fe site. The structure benefits the transportation of Li+ and the diffusion of Li+ in the doped materials are enhanced remarkably than that of the undoped one, which leads to excellent electrochemical performance. The doped sample with x = 0.025 exhibits the best electrochemical performance, with the initial discharge capacity of 162.3 mAh g−1 at 0.1 C rate.  相似文献   

5.
In the last few years, several strategies towards boosting the electrochemical performance of LiFePO4 cathodes have been envisaged. Copper addition to the phosphate seems to be a simple, inexpensive method for this purpose. However, it has a serious drawback: at voltages slightly higher than that required for lithium extraction from LiFePO4, the copper is oxidized to either Cu(I) or Cu(II) with partial decomposition of the electrolyte. XRD patterns are consistent with the disappearance of copper from pristine composites upon charging at up to 4.0 V. Moreover, a copper deposit is formed on the lithium surface in the discharged state that creates a barrier hindering the release of Li ion from the electrode. Therefore, copper electroactivity strongly influences the capacity and cycling life of the cell.  相似文献   

6.
Amorphous LiFePO4 was obtained by lithiation of FePO4 synthesized by spontaneous precipitation from equimolar aqueous solutions of Fe(NH4)2(SO4)2·6H2O and NH4H2PO4, using hydrogen peroxide as oxidizing agent. Nano-crystalline LiFePO4 was obtained by heating amorphous nano-sized LiFePO4 for different periods of time. The materials were characterized by TG, DTA, X-ray powder diffraction, scanning electron microscopy (SEM) and BET. All materials showed very good electrochemical performance in terms of energy and power density. Upon cycling, a capacity fading affected the materials, thus reducing the electrochemical performance. Nevertheless, the fading decreased upon cycling and after the 200th cycle the cell was able to cycle for more than 500 cycles without further fading.  相似文献   

7.
Undoped lithium iron phosphate (LiFePO4) was prepared and characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis. The material has a single crystal globular structure with grain-sizes ca. 100-150 nm. It was used to prepare composite electrodes containing different amounts of carbon (10, 15 and 20 wt.%, respectively) used as cathodes in non-aqueous lithium cells. By increasing the carbon content, an increase in the overall electrochemical performance was observed. Impedance spectroscopy was used to investigate the ohmic and kinetic contributions to the cell overvoltage. It was found that increasing the carbon content leads to a reduction of the cell impedance as a consequence of the reduction of the charge transfer resistance. The poor performance exhibited at very high discharge rates is a direct consequence of the high value of the charge transfer resistance. A further decrease of the charge transfer resistance in high carbon content cathodes (20 wt.% carbon) was obtained by improving the powder mixing procedure. The cell performance of well mixed, high carbon content electrodes was better than our previously obtained results in terms of higher capacity retention both for different discharge rates and repeated cycling. For currents larger than a 3 C rate, a severe capacity fade affected the electrodes. It was concluded that the electronic contact at the LiFePO4/carbon interface plays a decisive role in material utilization at different discharge rates which affects the capacity fade upon cycling.  相似文献   

8.
以醋酸锰为Mn源,葡萄糖为C源,采用高温固相法合成磷酸亚铁锂,对磷酸亚铁锂进行了Fe位掺杂和表面的包覆碳研究。用XRD、恒流充放电研究了材料的结构和电化学性能。结果表明:掺杂及包覆后的材料仍然具有橄榄石型晶体结构,并且掺杂及包覆碳后材料的初始容量和循环性能都得到了改善,表现出了良好的循环性能和高倍率性能。  相似文献   

9.
A LiFePO4/C composite was successfully prepared by a polymer-pyrolysis–reduction method, using FePO4·2H2O and lithium polyacrylate (PAALi) as raw materials. The structure of the LiFePO4/C composites was investigated by X-ray diffraction (XRD). The micromorphology of the precursor and LiFePO4/C powders was observed using scanning electron microscopy (SEM), and the in situ coating of carbon on the particles was observed by transmission electron microscopy (TEM). Furthermore, the electrochemical properties were evaluated by cyclic voltammograms (CVs), electrochemical impedance spectra (EIS) and constant current charge/discharge cycling tests. The results showed that the sample synthesized at 700 °C had the best electrochemical performance, exhibiting initial discharge capacities of 157, 139 and 109 mAh g−1 at rates of 0.1, 1 and 5 C, respectively. Moreover, the sample presented excellent capacity retention as there was no significant capacity fade after 50 cycles.  相似文献   

10.
LiFe1−xNdxPO4/C (x = 0-0.08) cathode material was synthesized using a solid-state reaction. The synthesis conditions were optimized by thermal analysis of the precursor and magnetic properties of LiFePO4/C. The structure and electrochemical performances of the material were studied using XRD, FE-SEM, EDS, electrochemical impedance spectroscopy and galvanostatic charge-discharge. The results show that a small amount of aliovalent Nd3+ ion-dopant substitution on Fe2+ ions can effectively reduce the particle size of LiFePO4/C. Cell parameters of LiFe1−xNdxPO4 (x = 0.04-0.08) were calculated, and the results showed that LiFe1−xNdxPO4/C had the same olivine structure as LiFePO4. LiFe0.4Nd0.6PO4/C delivers the discharge capacity of 165.2 mAh g−1 at rate of 0.2 C and the capacity retention rate is 92.8% after 100 cycles. Charge-transfer resistance decreases with the addition of glucose and Nd3+ ions. Poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS) was synthesized and PZS nanorods were used as a carbon source to coat LiFePO4. All of the results show that aliovalent doping substitution of Fe in LiFePO4 is well tolerated.  相似文献   

11.
Na+ and Cl co-doped LiFePO4/C composites were prepared via a simple solid state reaction. The structure, valence state and electrochemical performance were carefully investigated. Rietveld refinement on X-ray diffractions reveals that Na+ and Cl have successfully been introduced into the lattice of LiFePO4. X-ray photoelectron spectroscopy proves that the co-doping of Na+ and Cl does not change the chemical state of Fe(II). Experimental results further show that the co-doping contributes to induce the lattice distortion, modify the particle morphology, and increase the electronic conductivity. Considerably enhanced capacity, coulombic efficiency and rate capability were obtained in the co-doped LiFePO4. The specific capacities are 157 mAh g−1 at 0.2 C, 115 mAh g−1 at 10 C and 98 mAh g−1 at 20 C for the (Na+, Cl) co-doped LiFePO4/C cathode material. The improvement can be ascribed to the enhanced electronic conductivity and electrode kinetics due to the micro-structural modification promoted by co-doping.  相似文献   

12.
A spherical carbon-coated nano–micro structured LiFePO4 composite is synthesized for use as a cathode material in high-power lithium-ion batteries. The composites are synthesized through carbothermal reduction with two sessions of ball milling (before and after pre-sintering of precursor) followed by spray-drying with the dispersant of polyethylene glycol added. The structure, particle size, and surface morphology of the cathode active material and the properties of the coated carbon are investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. Results indicate that the LiFePO4/C composite has a spherical micro-porous morphology composed of a large number of carbon-coated nano-spheres linked together with an ordered olivine structure. The carbon on the surface of LiFePO4 effectively reduces inter-particle agglomeration of the LiFePO4 particles. A galvanostatic charge–discharge test indicates that the LiFePO4/C composites exhibit initial discharge capacities of 155 mAh g−1 and 88 mAh g−1 at 0.2 C and 20 C rates with the end of discharge voltage of 2.5 V, respectively. This behavior is ascribed to the unique spherical structure, which shortens lithium ions diffusion length and improves the electric contact between LiFePO4 particles.  相似文献   

13.
LiFePO4/C composites were synthesized by two methods using home-made amorphous nano-FePO4 as the iron precursor and soluble starch, sucrose, citric acid, and resorcinol-formaldehyde (RF) polymer as four carbon precursors, respectively. The crystalline structures, morphologies, compositions, electrochemical performances of the prepared powders were investigated with XRD, TEM, Raman, and cyclic voltammogram method. The results showed that employing soluble starch and sucrose as the carbon precursors resulted in a deficient carbon coating on the surface of LiFePO4 particle, but employing citric acid and RF polymer as the carbon precursors realized a uniform carbon coating on the surface of LiFePO4 particle, and the corresponding thicknesses of the uniform carbon films are 2.5 nm and 4.5 nm, respectively. When RF polymer was used as the carbon precursor, the material showed the highest initial discharge capacity (138.4 mAh g− 1 at 0.2 C at room temperature) and the best rate performance among the four materials.  相似文献   

14.
Pure, nano-sized LiFePO4 and LiFePO4/C cathode materials are synthesized by spray-drying and post-annealing method. The influence of the sintering temperature and carbon coating on the structure, particle size, morphology and electrochemical performance of LiFePO4 cathode material is investigated. The optimum processing conditions are found to be thermal treatment for 10 h at 600 °C. Compared with LiFePO4, LiFePO4/C particles are smaller in size due to the inhibition of crystal growth to a great extent by the presence of carbon in the reaction mixture. And that the LiFePO4/C composite coated with 3.81 wt.% carbon exhibits the best electrode properties with discharge capacities of 139.4, 137.2, 133.5 and 127.3 mAh g−1 at C/5, 1C, 5C and 10C rates, respectively. In addition, it shows excellent cycle stability at different current densities. Even after 50 cycles at the high current density of 10C, a discharge capacity of 117.7 mAh g−1 is obtained (92.4% of its initial value) with only a low capacity fading of 0.15% per cycle.  相似文献   

15.
Structural change of Cr-doped LiFePO4/C during cycling is investigated using conventional and synchrotron-based in situ X-ray diffraction techniques. The carbon-coated and Cr-doped LiFePO4 particles are synthesized by a mechanochemical process followed by a one-step heat treatment. The LiFe0.97Cr0.03PO4/C has shown excellent rate performance, delivering the discharge capacity up to 120 mAh/g at 10 C rate. The results suggest that the improvement of the rate performance is attributed to the chromium doping, which facilitates the phase transformation between triphylite and heterosite during cycling, and conductivity improvement by carbon coating. Structural analysis using the synchrotron source also indicates that the doped Cr replaces Fe and/or Li sites in LiFePO4.  相似文献   

16.
The cathode material is synthesized from FeC2O4·2H2O and LiH2PO4 by a solid-state reaction using citric acid as a carbon source. The electric conductivity of the synthesized LiFePO4 has been raised by eight orders of magnitude from 10−9 S cm−1. The LiFePO4/C composite shows a greatly enhanced rate performance and the cyclic stability at room temperature. It delivers an initial discharge capacity of 128 mAh g−1 at 4C, which is retained as high as 92% after 1000 cycles. In addition, the tested low temperature character is attractive. At −20 °C, the composite exhibits a discharge capacity of 110 mAh g−1 at 0.1C. The homogenous morphology, the porous surface, the small particles inside and the conductive carbon observed contribute much to obtain the favorable electrochemical performance.  相似文献   

17.
Yan Cui 《Electrochimica acta》2010,55(3):922-7735
Carbon coated LiFePO4 particles were first synthesized by sol-gel and freeze-drying method. These particles were then coated with La0.7Sr0.3MnO3 nanolayer by a suspension mixing process. The La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 particles were calcined at 400 °C for 2 h in a reducing atmosphere (5% of hydrogen in nitrogen). Nanolayer structured La0.7Sr0.3MnO3 together with the amorphous carbon layer forms an integrate network arranged on the bare surface of LiFePO4 as corroborated by high-resolution transmission electron microscopy. X-ray diffraction results proved that the co-coated composite still retained the structure of the LiFePO4 substrate. The twin coatings can remarkably improve the electrochemical performance at high charge/discharge rates. This improvement may be attributed to the lower charge transfer resistance and higher electronic conductivity resulted from the twin nanolayer coatings compared with the carbon coated LiFePO4.  相似文献   

18.
LiFePO4/C cathode material has been simply synthesized via a modified in situ solid-state reaction route using the raw materials of Fe2O3, NH4H2PO4, Li2C2O4 and lithium polyacrylate (PAALi). The sintering temperature of LiFePO4/C precursor is studied by thermo-gravimetric (TG)/differential thermal analysis (DTA). The physical properties of LiFePO4/C are then investigated through analysis using by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and the electrochemical properties are investigated by electrochemical impedance spectra (EIS), cyclic voltammogram (CV) and constant current charge/discharge test. The LiFePO4/C composite with the particle size of ∼200 nm shows better discharge capacity (156.4 mAh g−1) than bare LiFePO4 (52.3 mAh g−1) at 0.2 C due to the improved electronic conductivity which is demonstrated by EIS. The as-prepared LiFePO4/C through this method also shows excellent high-rate characteristic and cycle performance. The initial discharge capacity of the sample is 120.5 mAh g−1 and the capacity retention rate is 100.6% after 50 cycles at 5 C rate. The results prove that the using of organic lithium salts can obtain a high performance LiFePO4/C composite.  相似文献   

19.
LiFePO4 thin films were deposited on Ti substrates by pulsed laser deposition (PLD). The apparent chemical diffusion coefficients of lithium in the films, , were measured by cyclic voltammetry (CV), galvanostatic intermittent titration technique (GITT), and electrochemical impedance spectroscopy (EIS). The average values calculated from CV results were in the order of 10−14 cm2 s–1. The values obtained by GITT, and EIS techniques were in the range of 10–14–10–18 cm2 s–1, 10–14–10–18 cm2 s–1, respectively. The values obtained by the two methods show a minimum point at x ∼ 0.5 for Li1−xFePO4. However, the overpotential values of the LiFePO4 thin film electrodes obtained from the GITT results and the diffusion impedance deduced from the impedance spectra also show the minimum values at x ∼ 0.5 for Li1–xFePO4. This contradict could be caused by the improper use of GITT and EIS techniques for measuring the chemical diffusion coefficient of Li in Li1–xFePO4 which constitutes two phase, i.e., LiFePO4 and FePO4 in this region.  相似文献   

20.
Capacity intermittent titration technique (CITT) was used to investigate the chemical diffusion coefficient () of lithium-ion in LiFePO4 cathode material. The values of at the galvano-charge current of 0.2 and 0.4 mA were respectively found to range from 8.8 × 10−16 to 8.9 × 10−14 cm2 s−1 and from 1.2 × 10−16 to 8.5 × 10−14 cm2 s−1 in the voltage range from 3.2 to 4 V (vs. Li+/Li). The transfer coefficients of cathode (0.32-0.42) and anodic (0.26-0.3), and the standard rate constant (1.58 × 10−9 to 1.30 × 10−8 cm s−1) were measured from the Tafel plots of LiFePO4 in the equilibrium potential range from 3.06 to 3.45 V. From these kinetic parameters, the finite kinetics at interface was taken into account to revise the above values of . The revised values of at the galvano-charge current of 0.2 and 0.4 mA were respectively found to range from 2.44 × 10−15 to 2.21 × 10−13 cm2 s−1 and from 5.81 × 10−16 to 3.22 × 10−13 cm2 s−1 in the voltage range from 3.2 to 4 V. Results show that the approximation of infinite charge-transfer kinetics leads to a spurious value of which is lower than the revised value, and the spurious extent depends on the galvano-charge current of CITT experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号