首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we examined the electrochemical behaviour of lithium ion batteries containing lithium iron phosphate as the positive electrode and systems based on Li-Al or Li-Ti-O as the negative electrode. These two systems differ in their potential versus the redox couple Li+/Li and in their morphological changes upon lithium insertion/deinsertion. Under relatively slow charge/discharge regimes, the lithium-aluminium alloys were found to deliver energies as high as 438 Wh kg−1 but could withstand only a few cycles before crumbling, which precludes their use as negative electrodes. Negative electrodes consisting solely of aluminium performed even worse. However, an electrode made from a material with zero-strain associated to lithium introduction/removal such as a lithium titanate spinel exhibited good performance that was slightly dependent on the current rate used. The Li4Ti5O12/LiFePO4 cell provided capacities as high as 150 mAh g−1 under C-rate in the 100th cycle.  相似文献   

2.
Amorphous hydrated iron (III) phosphate has been synthesized by a coordinate precipitation method from equimolecular Fe(NO3)3 and (NH4)2HPO4 solutions at an elevated temperature. Hydrated iron (III) phosphate samples and the corresponding LiFePO4/C products were characterized by XRD and SEM. The electrochemical behavior was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The LiFePO4/C fabricated from as-synthesized FePO4 delivered discharge capacities of 162.5, 147.3, 133.0, 114.7, 97.2, 91.3 and 88.5 mAh g−1 at rates of 0.1C, 0.2C, 0.5C, 1C, 2C, 3C and 4C with satisfactory capacity retention, respectively.  相似文献   

3.
In this work, LiFePO4/C composites were prepared in hydrothermal system by using iron gluconate as iron source, and two feeding sequences during the preparation were comparatively studied. The morphology, crystal structure and charge–discharge performance of the prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and galvanostatic charge–discharge testing. The results showed that the feeding sequences and iron gluconate seriously affected the microstructures and electrochemical properties of the resulting LiFePO4 cathodes in lithium ion batteries. The spindle-shaped LiFePO4 with hierarchical microporous structure self-assembled by nanoparticles has been successfully synthesized by synthesis route B. In addition, the cell performance of the synthesized LiFePO4 by synthesis route B was better than that of LiFePO4 by synthesis route A. Specially at high rates, the superior rate performance of the spindle-shaped LiFePO4/C microstructure (LFP/C-B) was revealed. And special reversible capacities of ∼118 and ∼95 mAh g−1 were obtained at rates of 2 C and 5 C, comparing to ∼96 and ∼68 mAh g−1 for LFP/C-A.  相似文献   

4.
Pure, nano-sized LiFePO4 and LiFePO4/C cathode materials are synthesized by spray-drying and post-annealing method. The influence of the sintering temperature and carbon coating on the structure, particle size, morphology and electrochemical performance of LiFePO4 cathode material is investigated. The optimum processing conditions are found to be thermal treatment for 10 h at 600 °C. Compared with LiFePO4, LiFePO4/C particles are smaller in size due to the inhibition of crystal growth to a great extent by the presence of carbon in the reaction mixture. And that the LiFePO4/C composite coated with 3.81 wt.% carbon exhibits the best electrode properties with discharge capacities of 139.4, 137.2, 133.5 and 127.3 mAh g−1 at C/5, 1C, 5C and 10C rates, respectively. In addition, it shows excellent cycle stability at different current densities. Even after 50 cycles at the high current density of 10C, a discharge capacity of 117.7 mAh g−1 is obtained (92.4% of its initial value) with only a low capacity fading of 0.15% per cycle.  相似文献   

5.
Sulfolane (also referred to as tetramethylene sulfone, TMS) containing LiPF6 and vinylene carbonate (VC) was tested as a non-flammable electrolyte for a graphite |LiFePO4 lithium-ion battery. Charging/discharging capacity of the LiFePO4 electrode was ca. 150 mAh g−1 (VC content 5 wt%). The capacity of the graphite electrode after 10 cycles establishes at the level of ca. 350 mAh g−1 (C/10 rate). In the case of the full graphite |1 M LiPF6 + TMS + VC 10 wt% |LiFePO4 cell, both charging and discharging capacity (referred to cathode mass) stabilized at a value of ca. 120 mAh g−1. Exchange current density for Li+ reduction on metallic lithium, estimated from electrochemical impedance spectroscopy (EIS) experiments, was jo(Li/Li+) = 8.15 × 10−4 A cm−2. Moreover, EIS suggests formation of the solid electrolyte interface (SEI) on lithium, lithiated graphite and LiFePO4 electrodes, protecting them from further corrosion in contact with the liquid electrolyte. Scanning electron microscopy (SEM) images of pristine electrodes and those taken after electrochemical cycling showed changes which may be interpreted as a result of SEI formation. No graphite exfoliation was observed. The main decomposition peak of the LiPF6 + TMS + VC electrolyte (TG/DTA experiment) was present at ca. 275 °C. The LiFePO4(solid) + 1 M LiPF6 + TMS + 10 wt% VC system shows a flash point of ca. 150 °C. This was much higher in comparison to that characteristic of a classical LiFePO4 (solid) + 1 M LiPF6 + 50 wt% EC + 50 wt% DMC system (Tf ≈ 37 °C).  相似文献   

6.
Carbon-dispersed LiFePO4 materials were routinely prepared by heating metal-salt-containing pastes of organogels to temperatures at 300 and 700 °C to benefit the intrinsic conductivity, and we ultimately discerned the optimized carbon content, 4.55 wt%. Carbon doping will decrease tap density of prepared cathode material and then bring about electrode preparing difficulty, so we tried different kinds of organogels to make out the densest carbon composite. They were polyacrylamide (PAM), sugar and phenolic resin. The most excellent pyrolyzed PAM paste was found increasingly electrochemical reversible, exhibiting 113.2 mAh/g at C/6 and 95 mAh/g at C/3. And we found a good cycliability of 95 mAh/g at 0.2 mA cm−2 at room temperature. Seen from atomic force microscopy, this composite was far more different from other pyrolyzed pastes in morphology, which contained judicious designed hiberarchy and highly dispersed nanoparticles. Decreased 2θ in XRD spectra also showed the varied cell parameters, though no exact figures of the varied cell parameters could be given due to a potential existence of an unknown second phase with electrochemical activity.  相似文献   

7.
The capacity loss rate of LiFePO4 in aqueous electrolyte was found to be much faster than it in organic electrolyte. The cycling stability in aqueous electrolyte with various dissolved oxygen content and pH value was extensively studied by cyclic voltammetry. It was found that both high OH and dissolve O2 content can accelerate the cycling fading of LiFePO4. It has been proved that the capacity fading of LiFePO4 is due to not only chemical instability but also electrochemical instability. Mössbauer spectroscopy demonstrated that the Fe(III)-containing species was formed in the active materials arisen from the irreversible side reaction. The carbon-coated LiFePO4 prepared by chemical vapor decomposition method shows significantly improvement in cycling stability. The carbon coating technology provides an effective approach to enhance cycling performance in aqueous electrolyte as well as proof of proposed fading mechanism.  相似文献   

8.
LiFePO4 thin films have been prepared by pulsed laser deposition method on titanium substrates. The influence of the deposition parameters, e.g. substrate temperature, ambient argon pressure, and post-annealing on the crystallinity and morphology of as-deposited thin films are investigated. Well-crystallized pure olivine-phase is obtained under optimized deposition condition (20–30 Pa, 500 °C). It shows a high electrochemical activity (83% theoretical capacity) at low current density (0.33 μA cm−2, 1/20 C) and elevated testing temperature (45 °C). Moderate post-annealing treatment can enhance the utilization of the films further. The deposition of the film at a too high temperature or post-annealing for too long time could introduce Fe3+ impurities, i.e., Li3Fe2(PO4)3 and Fe4(P2O7)3, which can be easily detected by extending the electrochemical test voltage down to 2.5 V.  相似文献   

9.
A water quenching (WQ) method was developed to synthesize LiFePO4 and C-LiFePO4. Our results indicate that this synthesis method ensures improved electrochemical activity and small crystal grain size. The synthetic conditions were optimized using orthogonal experiments. The LiFePO4 sample prepared at the optimized condition showed a maximum discharge capacity of 149.8 mAh g−1 at a C/10 rate. C-LiFePO4 with a low carbon content of 0.93% and a high discharge specific capacity of 163.8 mAh g−1 has also been obtained using this method. Water quenching treatment shows outstanding improvement of the electrochemical performance of LiFePO4.  相似文献   

10.
By an oxidative-coupling copolymerization with coumarin, the oxidation potential of polytriphenylamine was improved to 3.75 V from 3.60 V. The copolymer exhibited excellent electrochemical activity in redox cycling. The separator used in the experiment was prepared by roll pressing the copolymer powder with 30% (wt.) polytetrafluoroethylene into a ∼80 μm thick sheet, which was incorporated into a LiFePO4-Li cell. Tests showed that when the cell was overcharged to 3.789 V, the copolymer separator was oxidized and became electronically conducting, which caused short circuit formation and prevented the organic electrolyte from being oxidized. Although the cell was overcharged at 0.3 C for 5 h, the voltage was stable at 3.789 V. When discharged, the cell released all its capacity at normal charge. The cell was overcharged seven times with identical results obtained for each cycle. Overcharging at different rates demonstrated that the separator could exhibit reversible, self-activating protection for LiFePO4-based batteries, even at 1.3 mA/cm2 (3.2 C to the cell).  相似文献   

11.
The electroactive LiFePO4/C nano-composite has been synthesized by an emulsion drying method. During burning-out the oily emulsion precipitates in an air-limited atmosphere at 300 °C, amorphous or low crystalline carbon was generated along with releasing carbon oxide gases, and trivalent iron as a cheap starting material was immediately reduced to the divalent one at this stage as confirmed by X-ray photoelectron spectroscopy, leading to a low crystalline LiFePO4/C composite. Heat-treatment of the low crystalline LiFePO4/C in an Ar atmosphere resulted in a well-ordered olivine structure, as refined by Rietveld refinement of the X-ray diffraction pattern. From secondary electron microscopic and scanning transmission electron microscopic observations with the corresponding elemental mapping images of iron and phosphorous, it was found that the LiFePO4 powders are modified by fine carbon. The in situ formation of the nano-sized carbon during crystallization of LiFePO4 brought about two advantages: (i) an optimized particle size of LiFePO4, and (ii) a uniform distribution of fine carbon in the product. These effects of the fine carbon on LiFePO4/C composite led to high capacity retention upon cycling at 25 and 50 °C and high rate capability, resulting from a great enhancement of electric conductivity as high as 10−4 S cm−1. That is, the obtained capacity was higher than 90 mAh (g-phosphate)−1 by applying a higher current density of about 1000 mA g−1 (11 C) at 50 °C.  相似文献   

12.
To fabricate all-solid-state Li batteries using three-dimensionally ordered macroporous Li1.5Al0.5Ti1.5(PO4)3 (3DOM LATP) electrodes, the compatibilities of two anode materials (Li4Mn5O12 and Li4Ti5O12) with a LATP solid electrolyte were tested. Pure Li4Ti5O12 with high crystallinity was not obtained because of the formation of a TiO2 impurity phase. Li4Mn5O12 with high crystallinity was produced without an impurity phase, suggesting that Li4Mn5O12 is a better anode material for the LATP system. A Li4Mn5O12/3DOM LATP composite anode was fabricated by the colloidal crystal templating method and a sol-gel process. Reversible Li insertion into the fabricated Li4Mn5O12/3DOM LATP anode was observed, and its discharge capacity was measured to be 27 mA h g−1. An all-solid-state battery composed of LiMn2O4/3DOM LATP cathode, Li4Mn5O12/3DOM LATP anode, and a polymer electrolyte was fabricated and shown to operate successfully. It had a potential plateau that corresponds to the potential difference expected from the intrinsic redox potentials of LiMn2O4 and Li4Mn5O12. The discharge capacity of the all-solid-state battery was 480 μA h cm−2.  相似文献   

13.
The electrochemical behavior and surface characterization of manganese dioxide (MnO2) containing titanium disulphide (TiS2) as a cathode in aqueous lithium hydroxide (LiOH) electrolyte battery have been investigated. The electrode reaction of MnO2 in this electrolyte is shown to be lithium insertion rather than the usual protonation. MnO2 shows acceptable rechargeability as the battery cathode. The influence of TiS2 (1, 3 and 5 wt%) additive on the performance of MnO2 as a cathode has been determined. The products formed on reduction of the cathode material have been characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), fourier transform infrared spectroscopy (IR) and transmission electron microscopy (TEM). It is found that the presence of TiS2 to ≤3 wt% improves the discharge capacity of MnO2. However, increasing the additive content above this amount causes a decrease in its discharge capacity.  相似文献   

14.
Yan Cui 《Electrochimica acta》2010,55(3):922-7735
Carbon coated LiFePO4 particles were first synthesized by sol-gel and freeze-drying method. These particles were then coated with La0.7Sr0.3MnO3 nanolayer by a suspension mixing process. The La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 particles were calcined at 400 °C for 2 h in a reducing atmosphere (5% of hydrogen in nitrogen). Nanolayer structured La0.7Sr0.3MnO3 together with the amorphous carbon layer forms an integrate network arranged on the bare surface of LiFePO4 as corroborated by high-resolution transmission electron microscopy. X-ray diffraction results proved that the co-coated composite still retained the structure of the LiFePO4 substrate. The twin coatings can remarkably improve the electrochemical performance at high charge/discharge rates. This improvement may be attributed to the lower charge transfer resistance and higher electronic conductivity resulted from the twin nanolayer coatings compared with the carbon coated LiFePO4.  相似文献   

15.
In this work, carbon-coated lithium-ion intercalated compound LiTi2(PO4)3 and MnO2 have been synthesized and they deliver a capacity of 90 and 60 mAh/g in 1 M Li2SO4 neutral aqueous electrolyte within safe potentials without O2 and H2 evolution, respectively. The novel hybrid supercapacitor in which MnO2 was used as a positive electrode and carbon-coated LiTi2(PO4)3 as a negative electrode was assembled and the LiTi2(PO4)3/MnO2 hybrid supercapacitor showed a sloping voltage profile from 0.7 to 1.9 V, at an average voltage near 1.3 V, and delivers a capacity of 36 mAh/g and an energy density of 47 Wh/kg based on the total weight of the active electrode materials. It exhibits a desirable profile and maintains over 80% of its initial energy density after 1000 cycles. The hybrid supercapacitor also exhibit an excellent rate capability, even at a power density of 1000 W/kg, it has a specific energy 25 Wh/kg compared with 43 Wh/kg at the power density about 200 W/kg.  相似文献   

16.
The composite cathode materials of LiFePO4/C were synthesized by spray-drying and post-annealing method. The crystalline structure and morphology of products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The charge-discharge kinetics of LiFePO4/C electrode was investigated using electrochemical impedance spectroscopy (EIS). The results show that the increment of the resistance has a close relation to the appearance of the FePO4 phase during charge-discharge course, and that the ohmic resistance, charge transfer resistance and lithium-ion diffusion coefficients of the LiFePO4/C electrode do not change much by extended cycling tests, implying a relatively superior cyclability of the battery. The effect of cell temperature on the electrochemical reaction behaviors of LiFePO4/C electrode was also investigated using the EIS. It is confirmed that the effect of the cell temperature on the impedance results mainly from the enhancement of the lithium-ion diffusion at elevated temperatures.  相似文献   

17.
The synthetic rutile and metal-doped LiFePO4 are prepared from the high-titanium residue and iron-rich lixivium, which are obtained from the ilmenite by a mechanical activation and leaching process. ICP results show that the rutile contains 92.01% TiO2, 1.59% Fe2O3, 0.034% MnO2 and 0.60% (MgO + CaO), which meet the requirement of the titanium dioxide chlorination process. The results also reveal that small amounts of Al3+, Ca2+ and Ti4+ precipitate in the FePO4·xH2O precursor. XRD and Rietveld-refine results show that the metal-doped LiFePO4 is single olivine-type phase and well crystallized, and Ti4+ occupy M1 site, Ca2+ occupy M2 site and Al3+ occupy both sites, which indicates the formation of cation-deficient solid solution. The sample exhibits a capacity of 123 mAh g1 at 5C rate, and retains 94.3% of the capacity after 100 cycles.  相似文献   

18.
The impact of lithium extraction on the structural stabilities, electronic structures, bonding characteristics, and electrochemical performances of LiFePO4 compound was investigated by first-principles technique. The results demonstrated that the partition scheme of electrons not only affects the calculated atomic charges but also the magnetic properties. In FePO4 and LiFePO4 compounds, all Fe ions take high spin arrangements and have large magnetic moments (MMs), while the MMs of other ions are very small. The magnetisms of LixFePO4 compounds are mainly originated form Fe ions. It was found that the changes in d band electrons of the transition metals do play an important role in determining the voltage of a battery (versus Li/Li+). Furthermore, the variations in d band electrons also provide us a method to control the density of states (DOS) and carrier concentration at the Fermi energy. Our calculations confirmed that the substitution of Fe by Co and Ni ions leads to a voltage increase by about 0.70 V and 1.23 V respectively. According to the bond populations, it can be identified that strong covalent bonds are formed between O and P ions. The P–O bonds are much stronger than Fe–O ones. The partial DOSs further revealed that the covalent bonds in LixFePO4 are derived from the orbital overlaps between O2s,2p and P3s,3p states, and the overlap between Fe3d and O2p states. Such covalent bonds are of particularly importance for the excellent thermodynamic stabilities of the two-ends structures of LixFePO4.  相似文献   

19.
LiFePO4/C composite cathode materials with carbon nano-interconnect structures were synthesized by one-step solid state reaction using low-cost asphalt as both carbon source and reducing agent. Based on the thermogravimetry, differential scanning calorimetry, transmission electron microscopy and high-resolution transmission electron microscopy, a growth model was proposed to illustrate the formation of the carbon nano-interconnect between the LiFePO4 grains. The LiFePO4/C composite shows enhanced discharge capacity (150 mAh g−1) with excellent capacity retention compared with the bare LiFePO4 (41 mAh g−1) due to the electronically conductive nanoscale networking provided by the asphalt-based carbon. The results prove that the asphalt is a perfect carbon source and reduction agent for cost-effective production of high performance LiFePO4/C composite.  相似文献   

20.
In this work, we report a basic study on the mechanism of lithium ion de-insertion/insertion process from/into LiMn2O4 cathode material in aqueous Li2SO4 solution using electrochemical impedance spectroscopy (EIS). An equivalent circuit distinguishing the kinetic parameters of lithium ion de-insertion/insertion is used to simulate the experimental impedance data. The fitting results are in good agreement with the experimental results and the parameters of the kinetic process of Li+ de-insertion and insertion in LiMn2O4 at different potentials during charge and discharge are obtained using the same circuit. The results indicate that the de-insertion/insertion behavior of lithium ions at LiMn2O4 cathode in Li2SO4 aqueous solution is similar to that reported in the organic electrolytes. The charge transfer resistance (Rct), warburg resistance, double layer capacitance and chemical diffusion coefficient (DLi+) vary with potentials during de-insertion/insertion processes. Rct is lowest at the CV peak potentials and the important kinetic parameter, DLi+ exhibits two distinct minima at potentials corresponding to CV peaks during de-insertion–insertion and it was found to be between 10−8 and 10−10 cm2 s−1during lithium de-insertion/insertion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号