首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To facilitate the development of high performance polymer electrolyte fuel cells (PEFCs), we have proposed a new evaluation method for the effectiveness of Pt (EfPt) under actual PEFC operating conditions. We also have examined the dependence of the values of EfPt on experimental parameters, including the ionomer content in the catalyst layer. The EfPt parameter is defined as the ratio of mass activity (MA) in the membrane-electrode assembly (MEA) to the maximum mass activity (MAmax) at high potential, as estimated by use of the channel flow double electrode (CFDE) technique as an ideal case of complete ionic contact with the Pt surface. For the ionomer content in the catalyst layer (Nafion/carbon ratio, N/C), we found a distinct increase of EfPt with increasing N/C, indicating a beneficial effect of the ionic contact and connectivity of the ionic conduction path within the catalyst layer, even though the apparent utilization of platinum (UPt) was nearly constant. Typical EfPt values for the mid-range of N/C ratios were found to only reach ca. 12.5% for pure O2 and Tcell = 65 °C. Furthermore, the EfPt values in air only reached ca. 7.5%. It must be emphasized that there is still much room for the improvement of EfPt.  相似文献   

2.
The membrane electrode assembly (MEA) is the key component of a PEMFC stack. Conventional MEAs are composed of catalyzed electrodes loaded with 0.1–0.4 mgPt cm−2 pressed against a Nafion® membrane, leading to cell performance close to 0.8 W cm−2 at 0.6 V. Due to their limited stability at high temperatures, the cost of platinum catalysts and that of proton exchange membranes, the recycling problems and material availability, the MEA components do not match the requirements for large scale development of PEMCFs at a low cost, particularly for automotive applications.Novel approaches to medium and high temperature membranes are described in this work, and a composite polybenzimidazole–poly(vinylphosphonic) acid membrane, stable up to 190 °C, led to a power density of 0.5 W cm−2 at 160 °C under 3 bar abs with hydrogen and air. Concerning the preparation of efficient electrocatalysts supported on a Vulcan XC72 carbon powder, the Bönnemann colloidal method and above all plasma sputtering allowed preparing bimetallic platinum-based electrocatalysts with a low Pt loading. In the case of plasma deposition of Pt nanoclusters, Pt loadings as low as 10 μg cm−2 were achieved, leading to a very high mass power density of ca. . Finally characterization of the MEA electrical properties by Electrochemical Impedance Spectroscopy (EIS) based on a theoretical model of mass and charge transport inside the active and gas diffusion layers, together with the optimization of the operating parameters (cell temperature, humidity, flow rate and pressure) allowed obtaining electrical performance greater than 1.2 W cm−2 using an homemade MEA with a rather low Pt loading.  相似文献   

3.
Ultra-low pure Pt-based electrodes (0.04-0.12 mgPt/cm2) were prepared by dual ion-beam assisted deposition (dual IBAD) method on the surface of a non-catalyzed gas diffusion layer (GDL) substrate. Film thicknesses ranged between 250 and 750 Å, these are compared with a control, a conventional Pt/C (1.0 mgPt(MEA)/cm2, E-TEK). The IBAD electrode constituted a significantly different morphology, where low density Pt deposits (largely amorphous) were formed with varying depths of penetration into the gas diffusion layer, exhibiting a gradual change towards increasing crystalline character (from 250 to 750 Å). Mass specific power density of 0.297 gPt/kW is reported with 250 Å IBAD deposit (0.04 mgPt/cm2 for a total MEA loading of 0.08 mgPt/cm2) at 0.65 V. This is contrasted with the commercial MEA with a loading of 1 mgPt(MEA)/cm2 where mass specific power density obtained was 1.18 gPt/kW (at 0.65 V), a value typical of current state of the art commercial electrodes containing Pt/C. The principal shortcoming in this effort is the area specific power density which was in the range of 0.27-0.43 W/cm2 (for 250-750 Å IBAD) at 0.65 V, hence much below the automotive target value of 0.8-0.9 W/cm2 (at 0.65 V). An attempt to mitigate these losses is reported with the use of patterning. In this context a series of patterns ranging from 45 to 80% Pt coverage were used in conjunction with a hexagonal hole geometry. Up to 30% lowering of mass transport losses were realized.  相似文献   

4.
A new ionic liquid–polymer electrolyte was successfully tested in the planar amperometric solid-state sensor sensitive towards nitrogen dioxide. The electrolyte consists of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) and poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) in the ratio 57:43 mol.% and exhibits ionic conductivity 1.6 × 10−4 S cm−1 at 20 °C, high electrochemical stability (over 4 V on gold or glassy carbon) and thermal stability (over 230 °C). The analyte, gaseous nitrogen dioxide in air, was determined using the electrochemical reduction at −900 mV vs. Pt/air on gold minigrid indicating electrode with Pt/air as a reference electrode. The sensor response is linear in the NO2 concentration range 0.3–1.1 ppm and is reproducible and long-term stable.  相似文献   

5.
Pt-based catalysts have been widely investigated in propane dehydrogenation (PDH) owing to their high activity in C H activation, while it suffers from Pt sintering and coke deposition. We develop a transition metal Fe and zeolite support synergistic-modified method to realize the highly dispersed and stable Pt species inside zeolite over Pt/Fe-silicate-1. And it shows the excellent PDH performance with propylene generation rate of 51.6 mol C3H6 gPt−1 h−1 and low deactivation rate constant kd of 0.017 h−1 as well as a high TOFPt of 37.6 s−1 at 550°C. The systematic characterizations reveal the isolated Fe3+ species could significantly improve Pt dispersity and regulate Pt electronic density to realize a more positive Ptδ+ species inside Silicalite-1 pore. And the further in situ DRIFTS experiments demonstrate that the synergistic effect between the appropriate acidic Fe sites and the highly dispersed Ptδ+ species around Fe species are responsible for the superior PDH performance.  相似文献   

6.
To understand the concentration overpotential in the polymer electrolyte fuel cell (PEFC), we have performed an in situ analysis of the oxygen partial pressure (p[O2]CL/PEM) at the interface between the cathode catalyst layer (CL) and the polymer electrolyte membrane (PEM). Diffusion-limited oxygen reduction current was measured, with Pt probes inserted into the PEM, during cell operation by supplying H2 to the anode and O2 + N2 to the cathode at 80 °C. It was found that the p[O2]CL/PEM decreased by ca. 20% when the current density was stepped from 0 to 2.0 A cm−2 at p[O2]gas = 54 kPa and 100% RH at the cathode inlet, irrespective of the oxygen utilization UO2 (from 10% to 50%). Such a change in p[O2]CL/PEM might result in a concentration overpotential of ca. 10 mV, based on the Tafel slope of 120 mV decade−1 in the high current density region. It was also found that ohmic losses in the ionomer phase of the CL increased with decreasing humidity, from 100% to 80% RH, and became a dominant factor in the increased total overpotential, while the corresponding concentration overpotential was unchanged. The present results provide new insight into the transport of oxygen and water at the CL/PEM interface, especially at the high current densities required for the electric vehicle application.  相似文献   

7.
An amperometric sensor that measured ascorbic acid by the oxidation of the ascorbic acid on a Ni–Pt electrode was fabricated. The Ni component of the Ni–Pt alloy played a crucial role as a modifier that developed an erinaceous surface, which enlarged the sensing area and increased the sensitivity of the electrode. The Pt82Ni18 electrode exhibited the best sensitivity of 333 μA cm−2 mM−1 for ascorbic acid sensing. This electrode was further tested for reproducibility of the sensitivity, endurance, and interference; it exhibited excellent performance compared with electrodes reported in the literature.  相似文献   

8.
This study bridges the structure/composition of Pt-Co/C nanoparticles with their surface reactivity and their electrocatalytic activity. We show that Pt3Co/C nanoparticles are not stable during PEMFC operation (H2/air; j = 0.6 A cm−2, T = 70 °C) but suffer compositional changes at the nanoscale. In the first hours of operation, the dissolution of Co atoms at their surface yields to the formation of a Pt-enriched shell covering a Pt-Co alloy core (“Pt-skeleton”) and increases the affinity of the surface to oxygenated and hydrogenated species. This structure does not ensure stability in PEMFC conditions but is rather a first step towards the formation of “Pt-shell/Pt-Co alloy core” structures with depleted Co content. In these operating conditions, the Pt-Co/C specific activity for the ORR varies linearly with the fraction of Co alloyed to Pt present in the core and is severely depreciated (ca. −50%) after 1124 h of operation. This is attributed to: (i) the decrease of both the strain and the ligand effect of Co atoms contained in the core (ii) the changes in the surface structure of the electrocatalyst (formation of a multilayer-thick Pt shell) and (iii) the relaxation of the Pt surface atoms.  相似文献   

9.
Micelle-encapsulated multi-walled carbon nanotubes (MWCNTs) with sodium dodecyl sulfate (SDS) were used as catalyst support to deposit platinum nanoparticles. High resolution transmission electron microscopy (HRTEM) images reveal the crystalline nature of Pt nanoparticles with a diameter of ∼4 nm on the surface of MWCNTs. A single proton exchange membrane fuel cell (PEMFC) with total catalyst loading of 0.2 mg Pt cm−2 (anode 0.1 and cathode 0.1 mg Pt cm−2, respectively) has been evaluated at 80 °C with H2 and O2 gases using Nafion-212 electrolyte. Pt/MWCNTs synthesized by using modified SDS-MWCNTs with high temperature treatment (250 °C) showed a peak power density of 950 mW cm−2. Accelerated durability evaluation was carried out by conducting 1500 potential cycles between 0.1 and 1.2 V with 50 mV s−1 scan rate, H2/N2 at 80 °C. The membrane electrode assembly (MEA) with Pt/MWCNTs showed superior performance stability with a power density degradation of only ∼30% compared to commercial Pt/C (70%) after potential cycles.  相似文献   

10.
Ultra low loading noble metal (0.04–0.12 mgPt/cm2) based electrodes were obtained by direct metallization of non-catalyzed gas diffusion layers via dual ion beam assisted deposition (IBAD) method. Fuel cell performance results reported earlier indicate significant improvements in terms of mass specific power density of 0.297 gPt/kW with 250 Å thick IBAD deposit (0.04 mgPt/cm2 for a total MEA loading of 0.08 mgPt/cm2) at 0.65 V in contrast to the state of the art power density of 1.18 gPt/kW using 1 mgPt(MEA)/cm2 at 0.65 V. In this article we report the peroxide radical initiated attack of the membrane electrode assembly utilizing IBAD electrodes in comparison to commercially available E-TEK (now BASF Fuel Cell GmbH) electrodes and find the pathway of membrane degradation as well. A novel segmented fuel cell is used for this purpose to relate membrane degradation to peroxide generation at the electrode/electrolyte interface by means of systematic pre and post analyses of the membrane are presented. Also, we present the results of in situ X-ray absorption spectroscopy (XAS) experiments to elucidate the structure/property relationships of these electrodes that lead to superior performance in terms of gravimetric power density obtained during fuel cell operation.  相似文献   

11.
The integral enthalpies of H2 or O2 reactions with oxidized or reduced Pt supported on Al2O3 have been measured in a dual calorimeter at 60 ° C. These enthalpies were calculated assuming the formation of Pt x s O and PtsH surface groups and using accepted values of heat of H2 and O2 chemisorption on bare polycrystalline Pt. The calculated and measured reaction enthalpies agree under the following conditions: 1) Pt2O and Pt 2 s O surface stoichiometries are acceptable (1 x 2) whereas Pt2O2 must be rejected (x = 0.5); 2) the water formed in the reduction or oxidation process must be dissociatively chemisorbed on the Al2O3 surface; 3) the spiltover hydrogen is atomic and its enthalpy of combination with surface electron deficient site is about -10 kcal/g atom.The significance of dispersion measurements is discussed in relation with hydrogen spillover. Neglecting spillover in reduction at 60 ° C leads to unrealistic values of dispersion.  相似文献   

12.
The preparation and testing for electrocatalytic activity of functionalized carbon nanotube (f-CNT) supported Pt and Au–Pt nanoparticles (NPs), and bilirubin oxidase (BOD), are reported. These materials were utilized as oxygen reduction reaction (ORR) cathode electrocatalysts in a phosphate buffer solution (0.2 M, pH 7.4) at 25 °C, in the absence and presence of glucose. Carbon monoxide (CO) stripping voltammetry was applied to determine the electrochemically active surface area (ESA). The ORR performance of the Pt/f-CNTs catalyst was high (specific activity of 80.9 μA cmPt−2 at 0.8 V vs. RHE) with an open circuit potential within ca. 10 mV of that delivered by state-of-the-art carbon supported platinum catalyst and exhibited better glucose tolerance. The f-CNT support favors a higher electrocatalytic activity of BOD for the ORR than a commercially available carbon black (Vulcan XC-72R). These results demonstrate that f-CNTs are a promising electrocatalyst supporting substrate for biofuel cell applications.  相似文献   

13.
Cathode electrodes of proton exchange membrane fuel cells were fabricated by using Pt sputter deposition to increase the gravimetric power density (W mgPt−1) with reduced Pt loading. Ultra low Pt‐based electrodes having Pt loading in between 0.0011 and 0.06 mgPt cm−2 were prepared by a radio frequency (RF) sputter deposition method on the surface of a non‐catalyzed gas diffusion layer (GDL) substrate by changing the sputtering time (20, 90, 180, 1050 s). The effect of cathode Pt loading on the performance of membrane electrode assembly were investigated using polarization curve, impedance, H2 crossover and cyclic voltammetry techniques. The effect of backpressure on PEMFC performance was also investigated. Sputter1050 (0.06 mgPt cm−2) exhibited the best power density at 80 °C cell temperature and without backpressure for H2/O2, 100 %RH (297 mW cm−2 and 5 W mgPt−1 at 0.6 V). On the other hand sputter90 (0.005 mgPt cm−2) showed the peak gravimetric power density (15 W mgPt−1 and 75 mW cm−2 at 0.6 V). The Pt utilization efficiency increased as the Pt loading decreased. Sputter20 and sputter90 electrodes yielded insufficient electrochemical surface area (ECSA), higher charge transfer and ohmic resistance, but sputter180 and sputter1050 yielded sufficient ECSA and lower charge transfer and ohmic resistance.  相似文献   

14.
The preparation of Pt-zeolite catalysts, including choice of the noble metal precursor and loading (1.0–1.8 wt.%), was optimized for maximizing the catalytic activity in thiophene hydrodesulphurization (HDS) and benzene hydrogenation (HYD). According to data obtained by HRTEM, XPS, EXAFS and FTIR spectroscopy of adsorbed CO, the catalysts contained finely dispersed Pt nanoparticles (2–5 nm) located on montmorillonite and zeolite surfaces as: Pt0 (main, νCO = 2070–2095 cm−1), Ptδ+ (νCO = 2128 cm−1) and Pt2+ (νCO = 2149–2155 cm−1). It was shown that the state of Pt depended on the Si/Al zeolite ratio, montmorillonite presence and Pt precursor. The use of H2PtCl6 as the precursor (impregnation) promoted stabilization of an oxidized Pt state, most likely Pt(OH)xCly. When Pt(NH3)4Cl2 (ion-exchange) was used, the Pt0 and hydroxo- or oxy-complexes Pt(OH)62− or PtO2 were formed. The addition of the Ca-montmorillonite favoured stabilization of Pt. The Cl ions inhibit reduction of oxidized Pt state to Pt particles. The Pt-zeolite catalyst demonstrated high efficiency in ultra-deep desulphurization of DLCO. The good catalyst performance in hydrogenation activity and sulphur resistance can be explained by the favourable pore space architecture and the location and the state of the Pt clusters. The bimodal texture of the developed zeolite substrates allows realizing a concept for design of sulphur-resistant noble metal hydrotreating catalyst proposed by Song [C. Song, Shape-Selective Catalysis, Chemicals Synthesis and Hydrocarbon Processing (ACS Symposium Series 738), Washington, 1999, p. 381; Chemtech 29(3) (1999) 26].  相似文献   

15.
The interaction of Pt with CeO2 layers was investigated by using photoelectron spectroscopy. Thirty‐nanometre‐thick Pt and Sn doped CeO2 layers were deposited simultaneously by rf‐magnetron sputtering on a Si(001) substrate and a carbon diffusion layer of a polymer membrane fuel cell by using a composite CeO2–Pt–Sn target. The laboratory XPS and synchrotron radiation soft X‐ray and hard X‐ray photoemission spectra showed the formation of cerium oxide with completely ionised Pt2+,4+ species, and with Pt4+ embedded in the film bulk. Hydrogen/air fuel cell activity measurements normalised to the amount of Pt used revealed high specific power of up to 5.4 × 104 mW mg–1 (Pt). The activity of these materials is explained by the strong activity of embedded Ptn+ cations.  相似文献   

16.
An IrO2 anode catalyst was prepared by using the Adams method for the application of a solid polymer electrolyte (SPE) water electrolyzer. The effect of calcination temperature on the physical–chemical properties and the electrochemical performance of IrO2 were examined to obtain a low loading and a high catalytic activity of oxygen evolution at the electrode. The physical–chemical properties were studied via thermogravimetry–differential scanning calorimetry (TG–DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrochemical activity was investigated by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronopotentiometry in 0.1 mol L−1 H2SO4 at room temperature. The optimum condition was found to be at the calcination temperature of 500 °C, where the total polarization reached a minimum at high current densities (>200 mA cm−2). The optimized catalyst was also applied to a membrane electrode assembly (MEA) and stationary current–potential relationships were investigated. With an optimized catalytic IrO2 loading of 1.5 mg cm−2 and a 40% Pt/C loading of 0.5 mg cm−2, the terminal applied potential difference was 1.72 V at 2 A cm−2 and 80 °C in a SPE water electrolysis cell.  相似文献   

17.
Elecrochemical ATR-FTIRAS measurements were conducted for the first time to investigate nature of CO adsorbed under potential control on a highly dispersed Pt catalyst with average particle size of 2.6 nm supported on carbon black (Pt/C) and carbon un-supported Pt black catalyst (Pt-B). Each catalyst was uniformly dispersed by 10 μg Pt/cm2 and fixed by Nafion® film of 0.05 μm thick on a gold film chemically deposited on a Si ATR prism window. Adsorption of CO was conducted at 0.05 V on the catalysts in 1 and 100% CO atmospheres, for which CO coverage, θCO, was 0.69 and 1, respectively. Two well-defined ν(CO) bands free from band anomalies assigned to atop CO (CO(L)) and symmetrically bridge bonded CO (CO(B)sym.) were observed. It was newly found that the CO(L) band was spitted into two well-defined peaks, particularly in 1% CO, from very early stage of adsorption, which was interpreted in terms of simultaneous occupation of terrace and step-edge sites, denoted as CO(L)terrace and CO(L)edge, respectively. This simultaneous occupation was commonly observed in our work both on Pt/C and Pt-B. A new band was also observed around 1950 cm−1 in addition to the bands of CO(L) and CO(B)sym., which was assigned to asymmetric bridge CO, CO(B)asym., adsorbed on (1 0 0) terraces, based on our previous ECSTM observation of CO adsorption structures on (1 0 0) facet. The CO(B)asym. on the Pt/C, particularly in 100% CO atmosphere, results in growth of a sharp band at 3650 cm−1 accompanied by a concomitant development of a band around 3500 cm−1. The former and the latter are assigned to ν(OH) vibrations of non-hydrogen bonded and hydrogen bonded water molecules adsorbed on Pt, respectively, interpreted in term of results from a bond scission of the existing hydrogen bonded networks by CO(L)s and from a promotion of new hydrogen bonding among water molecules presumably by CO(B)asym..It was found that the frequency ν(CO) of CO(L) both on Pt/C and Pt-B is lower than that on bulky polycrystalline electrode Pt(poly) or different crystal planes of Pt single-crystal electrodes by 30-40 cm−1 at corresponding potentials, which implies a stronger electronic interaction between CO and Pt nano-particles and/or an increased contribution of step-edge sites on the particles. Determination of the band intensities of CO(L), CO(B)asym. and CO(B)sym. has led us to conclude a much higher bridged occupation of sites at Pt nano-particles than Pt(poly) electrodes.  相似文献   

18.
In situ grown carbon nanotubes (CNTs) on carbon paper as an integrated gas diffusion layer (GDL) and catalyst layer (CL) were developed for proton exchange membrane fuel cell (PEMFC) applications. The effect of their structure and morphology on cell performance was investigated under real PEMFC conditions. The in situ grown CNT layers on carbon paper showed a tunable structure under different growth processes. Scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) demonstrated that the CNT layers are able to provide extremely high surface area and porosity to serve as both the GDL and the CL simultaneously. This in situ grown CNT support layer can provide enhanced Pt utilization compared with the carbon black and free-standing CNT support layers. An optimum maximum power density of 670 mW cm−2 was obtained from the CNT layer grown under 20 cm3 min−1 C2H4 flow with 0.04 mg cm−2 Pt sputter-deposited at the cathode. Furthermore, electrochemical impedance spectroscopy (EIS) results confirmed that the in situ grown CNT layer can provide both enhanced charge transfer and mass transport properties for the Pt/CNT-based electrode as an integrated GDL and CL, in comparison with previously reported Pt/CNT-based electrodes with a VXC72R-based GDL and a Pt/CNT-based CL. Therefore, this in situ grown CNT layer shows a great potential for the improvement of electrode structure and configuration for PEMFC applications.  相似文献   

19.
Electrochemical activities and structural features of Pt/Sn catalysts supported by hydrogen-reduced SnO2 nanowires (SnO2NW) are studied, using cyclic voltammetry, CO stripping voltammetry, scanning electron microscopy, and X-ray diffraction analysis. The SnO2NW supports have been grown on a carbon paper which is commercially available for gas diffusion purposes. Partial reduction of SnO2NW raises the CO tolerance of the Pt/Sn catalyst considerably. The zero-valence tin plays a significant role in lowering the oxidation potential of COads. For a carbon paper electrode loaded with 0.1 mg cm−2 Pt and 0.4 mg cm−2 SnO2NW, a conversion of 54% SnO2NW into Sn metal (0.17 mg cm−2) initiates the COads oxidation reaction at 0.08 V (vs. Ag/AgCl), shifts the peak position by 0.21 V, and maximizes the CO tolerance. Further reduction damages the support structure, reduces the surface area, and deteriorates the catalytic activity. The presence of Sn metal enhances the activities of both methanol and ethanol oxidation, with a more pronounced effect on the oxidation current of ethanol whose optimal value is analogous to those of PtSn/C catalysts reported in literature. In comparison with a commercial PtRu/C catalyst, the optimal Pt/Sn/SnO2NW/CP exhibits a somewhat inferior activity toward methanol, and a superior activity toward ethanol oxidation.  相似文献   

20.
A novel sulfonated diamine monomer, 3-(2′,4′-diaminophenoxy)propane sulfonic acid (DAPPS), was successfully synthesized and the sulfonated polyimide (SPI) was prepared from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and DAPPS. The resulting SPI, NTDA-DAPPS, was soluble in common organic solvents. The SPI membrane displayed proton conductivity σ values of 0.12-0.35 S/cm at temperatures ranging from 35 to 90 °C in liquid water, which were similar to or higher than those of Nafion 117 and sulfonated hydrocarbon polymers. The σ of the SPI membrane decreased significantly with decreasing relative humidity (RH) and became much lower than that of Nafion 117 at 30% RH. The SPI membrane displayed good water stability at 80 °C and was thermally stable up to 240 °C. It showed reasonable mechanical strength of a modulus of 1.3 GPa at 90 °C and 90% RH. Its methanol permeability PM was 0.57×10−6 cm2/s at 30 °C and 8.6 wt% methanol in feed, which was a fourth of that of Nafion 117. As a result, its ratio of σ/PM was 21×104 S cm−3 s, which was about 4 times larger than that of Nafion 117, suggesting potential application of the SPI membrane for direct methanol fuel cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号